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ABSTRACT 

Biomass as a renewable energy source is becoming increasingly important due to rising 
prices and the environmental incompatibility of conventional energy sources. The most 
important parameter in assessing fuel quality is the higher heating value (HHV), which 
represents the amount of energy released per unit area. Existing linear mathematical models 
have a higher error in HHV prediction than nonlinear models, indicating the need to develop 
new nonlinear mathematical models for HHV biomass prediction. In this study, new nonlinear 
mathematical models in the form of higher-order polynomials (HOP), artificial neural 
networks (ANN), random regression forests (RFR) and support vector models (SVM) will be 
developed for HHV biomass modelling in agriculture and wood. In addition, the research will 
compare the developed nonlinear models to determine the smallest HHV modelling error for 
different sets of input variables. The data used to develop the model will be taken from the 
available literature and the non-linear models will be based on characteristic sets of variables 
from ultimate, proximate, and structural analysis. For all models developed, a data split of 
70% for training and 30% for model testing is used. A statistical analysis of “goodness of fit" 
is performed to identify the model with the lowest error and to select the most appropriate 
model for modelling HHV biomass. The results obtained from the nonlinear regression 
models are compared with the experimentally obtained data from the literature to investigate 
the performance and effectiveness of the developed models for HHV modelling. After testing 
the reliability and performance of the model, a sensitivity analysis is performed to optimise 
the models and find the optimal sample and the relationship between the input variables and 
the output variable (HHV). For this purpose, Yoon's method is used, which is based on the 
sensitivity analysis of the neurons in the hidden layer of the ANN. Yoon's method makes it 
possible to evaluate the importance of individual input variables about the HHV output values 
and to determine the most important variables for accurate and reliable modelling of the HHV 
biomass. The sensitivity analysis will help to identify the most important parameters affecting 
HHV, optimise the model and reduce the prediction error. The results of this research will 
provide insight into different nonlinear mathematical models for modelling HHV biomass, 
such as HOP, ANN, RFR and SVM, and their success in predicting HHV based on different 
sets of input variables. The comparison of the developed models will allow the selection of 
the most appropriate model for reliable prediction of HHV biomass, which would reduce the 
time required for HHV determination and improve the use of biomass as a renewable energy 
source. 

Keywords: biomass, higher heating value, mathematical modelling, artificial neural 
networks, higher degree polynomials, random forest regression, support vector machine. 

 

 

 

 

 

 

 

 

 

 

  



 
 

EXTENDED ABSTRACT IN CROATIAN 

Razvoj novih nelinearnih matematičkih modela u modeliranju gornje ogrjevne 
vrijednosti biomase 

Biomasa kao obnovljivi izvor energije sve više dobiva na važnosti zbog porasta cijene i 
ekološke neprihvatljivosti konvencionalnih izvora energije. Glavni parametar u procjeni 
kvalitete goriva je ogrjevna vrijednost (HHV), koja predstavlja količinu energije koja se 
oslobađa po jedinici površine. Postojeći linearni matematički modeli (sa jednim ili dva 
parametra) imaju veću grešku u predviđanju HHV od nelinearnih modela, što ukazuje na 
potrebu za razvojem novih nelinearnih matematičkih modela koji nude veći stupanj 
nelinearnosti za predviđanje HHV biomase. 

U ovom istraživanju, cilj je razviti nove nelinearne matematičke modele u obliku polinoma 
višeg stupnja (HOP), umjetnih neuronskih mreža (ANN), slučajnih šuma za regresiju (RFR) i 
modela potpornih vektora (SVM) za modeliranje HHV poljoprivredne i šumske biomase. 
Također, istraživanje će usporediti razvijene nelinearne modele kako bi se utvrdila najmanja 
pogreška modeliranja HHV s obzirom na različite setove ulaznih varijabli. Javno dostupni 
podaci korišteni za razvoj modela bit će prikupljeni iz raspoložive literature, a nelinearni 
modeli temeljit će se na karakterističnim setovima varijabli elementarne, fizikalno-kemijske i 
strukturalne analize. Za sve razvijene modele koristit će se podjela podataka od 70% za 
učenje i 30% za testiranje modela. Provest će se statistička analiza prikladnosti (eng. 
"Goodness of fit") kako bi se odredio model s najmanjom pogreškom za modeliranje HHV 
biomase. Rezultati dobiveni nelinearnim modelima usporedit će se s literaturno prikupljenim 
podacima kako bi se ispitale performanse i učinkovitost razvijenih modela za modeliranje 
HHV. Nakon ispitivanja pouzdanosti i performansi modela, bit će provedena analiza 
osjetljivosti kako bi se ispitao utjecaj ulaznih podataka na izlazne vrijednosti modela. U tu 
svrhu koristit će se Yoon-ova metoda, koja se temelji na analizi osjetljivosti neurona u 
skrivenom sloju ANN-a. Yoon-ova metoda omogućuje procjenu važnosti pojedinih ulaznih 
varijabli u odnosu na izlazne vrijednosti HHV, te utvrđivanje najvažnijih varijabli za točno i 
pouzdano modeliranje HHV biomase. Analiza osjetljivosti pomoći će u identificiranju 
najvažnijih parametara koji utječu na HHV te u optimizaciji modela i smanjenju pogreške u 
predviđanju. Rezultati ovog istraživanja pružit će uvid u različite nelinearne matematičke 
modele za modeliranje HHV biomase, kao što su HOP, ANN, RFR i SVM, te njihovu 
uspješnost u predviđanju HHV na temelju različitih setova ulaznih varijabli. Usporedba 
razvijenih modela omogućit će odabir najprikladnijeg modela za pouzdano predviđanje HHV 
biomase, čime bi se smanjilo vrijeme potrebno za utvrđivanje HHV i poboljšala upotreba 
biomase kao obnovljivog izvora energije. 

Fokus provedenog istraživanja bio je na razvoju novih nelinearnih modela za modeliranje 
HHV biomase. Ispitani su novorazvijeni nelinearni modeli, a nakon međusobne usporedbe, 
odabran je model s najmanjom pogreškom u odnosu na setove ulaznih varijabli elementarne, 
fizikalno-kemijske i strukturalne analize. Podaci koji su korišteni za razvijanje modela 
prikupljeni su iz raspoložive literature prethodnih znanstvenih istraživanja, konkretno iz 
znanstvenih publikacija koji su citirani u bazama "Web of Science" i "ScienceDirect". 
Prikupljeni podaci su zatim podijeljeni na poljoprivrednu i šumsku biomasu. Nelinearni modeli 
temeljili su se na setovima podataka elementarne (eng. ultimate), fizikalno-kemijske (eng. 
proximate), strukturalne (eng. structural) i kalorimetrijske (eng. calorimetric) analize. Nakon 
što je prikupljen dovoljan broj podataka, proveden je postupak "čišćenja" podataka s obzirom 
na kompletnost prikupljene baze podataka. Završetkom postupka čišćenja, podaci su 
podijeljeni na dio za učenje i testiranje modela u omjeru 70% i 30%. Za kreiranje nelinearnih 
modela koristili su se softverski alati za matematičko modeliranje i statističku analizu. 
Razvijeni su različiti modeli, uključujući modele HOP, ANN, RFR i SVM. Svaki model testiran 
je na pouzdanost i performanse. Analiza osjetljivosti provedena je Yoon-ovom metodom. Po 
završetku analiza, rezultati su interpretirani kako bi se mogli usporediti svi novorazvijeni 
modeli u smislu modeliranju HHV biomase. 



 
 

Statističkom analizom strukturalnog sastava biomase utvrđeno je da razlika u udjelu celuloze 
nije statistički značajna dok udio lignina, hemiceluloze i HHV je bio statistički značajno viši 
kod šumske biomase. Analizirajući razlike u fizikalno-kemijskom sastavu poljoprivredne i 
šumske biomase nisu utvrđene statistički značajne razlike u udjelu fiksiranog ugljika, hlapivih 
tvari i pepela, dok je kod varijabli elementarne analize utvrđen statistički značajno manji udio 
dušika (N) kod šumske biomase. Nakon kreiranja nelinearnih modela u svrhu modeliranja 
HHV biomase utvrđeno je da je ANN model imao manju razinu greške kod svih setova 
podataka (karakterističnih analiza) koji su korišteni kao setovi ulaznih podataka. Navedeno je 
dokazano pomoću statističke analize prikladnosti (“Goodness of fit”) modela gdje je ANN 
model za set ulaznih podataka elementarne analize (sa svim varijablama seta podataka) ima 
iduće rezultate: Hi-kvadrat test (χ2) = 1,02, korijen iz prosječne kvadratne pogreške 
(RMSE)=1,01, prosječne pogreške pristranosti (MBE) = 0,06, prosječne postotne pogreške 
(MPE) = 4,21, sumu kvadrata pogreške (SSE) = 251,19), prosječno apsolutno odstupanje 
(AARD) = 196,44, koeficijent determinacije (R²) = 0,90, mjere asimetrije podataka (Skew) = -
0,46, mjere spljoštenosti podataka (Kurt) = 1,23, standardna devijacija (SD) = 1,01 i varijanca 
= 1.01. Kod ulaznog seta fizikalno-kemijske analize (fiksirani ugljik i hlapive tvari) za ANN 
model izračunati su idući pokazatelji prikladnosti modela: χ2 (0,41), RMSE (0,64), MBE 
(0,03), MPE (2,65), SSE (118,33), AARD (240,27), R² (0,96), Skew (-0,48), Kurt (1,53), 
standardna devijacija (0,64), varijanca (0,41). Kod ulaznog seta podataka sturkturalne 
analize statistički paramteri za model ANN pokazali su iduće vrijednosti: χ2 (0,26), RMSE 
(0,51), MBE (0,00), MPE (2,30), SSE (74,81), AARD (193,72), R² (0,91), Skew (-1,09), 
Kurt (3,34), standardna devijacija (0,51), varijanca (0,26). Također za sve razvijene modele 
najmanju pogrešku u modeliranju su dobiveni kod ulaznog seta podataka fizikalno kemijske 
analize, gdje je kao glavni pokazatelj reprezentativnosti regresije uzet koeficijent 
determinacije (R2). Yoonova metoda globalne osjetljivosti koristila se za optimizaciju ANN 
modela (najpogodnijeg modela) kako bi se pronašla relativna važnost ulaznih varijabli (%) na 
izlaznu vrijednost HHV. Kod ulaznog seta podataka elementarne analize na HHV najviše 
utječe povećanje C, N i S kao i smanjenje H i O. Model sa najmanje pogreške u modeliranju 
uključivao je kao prediktorske varijable fiksirani ugljik i hlapive tvari, Yoonovom metodom je 
utvrđeno da smanjenjem navedenih varijabli dolazi do povećanja HHV biomase, dok kod 
varijabli stukturalne analize kao ulaznih podataka povećanje udjela celuloze, lignina kao I 
smanjenje hemiceluloze utječe na ukupno veći HHV.  
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models were compared in terms of modelling error, taking into 

account the model developed and the dataset used. 

H2. The ANN models 

have a lower error in 

modelling HHV of 

biomass than HOP, RFR 

and SVM, regardless of 

the set of input variables. 

In scientific paper number 5, models were created in the form of 

the artificial neural network (ANN), random forest regression 

(RFR), higher order polynomials (HOP) and support vector 

machine (SVM). These models are based on data sets from 

ultimate, structural and proximate analyses datasets of the 

biomass. After creation, all models were compared in terms of 

modelling error, taking into account the model type and the input 

dataset used. 

 

 

 



1 
 

1. INTRODUCTION 
 

In the context of the growing energy crisis and the emphasised need to use renewable 

energy sources (RES), the role of biomass as a raw material for energy production is 

becoming increasingly important. This is particularly important given the rising prices of 

conventional fuels and their harmful impact on the environment. Biomass is one of the key 

elements for achievement of the energy independence and energy sustainability (Callejón-

Ferre et al., 2014). Long-term energy strategies, especially those of the European Union 

(EU), emphasise the importance of the transition to renewable energy sources. The 

production of energy from renewable sources is one of the fundamental components for 

achieving the EU energy policy targets by 2030 (Scarlat Nicolae et al., 2019), while Mandley 

et al., (2022) states that energy produced from biomass could contribute to the necessary 

reduction in the use of conventional energy sources by up to 40%, as well as to an increase 

in the production of the biomass material itself in order to reduce negative climate changes. 

Biomass, as one of the most widely represented RES, offers a wide range of possibilities to 

produce various forms of useful energy. In addition to being used to produce biofuel, 

biomass is also used to generate electricity and thermal energy, which allows it to be 

integrated into various energy systems. Utilising biomass as an energy source can help to 

reduce the overall cost of energy production. This means that it is not only an 

environmentally friendly alternative to conventional fuels, but also an economically efficient 

one (Demirbas, 2017). 

The term biomass usually refers to biodegradable residues resulting from various 

production processes, e.g. in agriculture and forestry, as well as organic waste from plant 

and animal production. Lignocellulosic biomass, which is rich in fibres and cellulose, stands 

out as one of the most efficient raw materials for energy production (Olatunji et al., 2018). 

However, to optimise its use, it is crucial to determine its physical and chemical properties. 

This includes ultimate, proximate, and structural analyses of the biomass. This information is 

necessary to accurately determine the potential of biomass for energy production and is 

usually determined through laboratory analyses (Callejón-Ferre et al., 2014; Demirbas, 2017; 

Baxter et al., 2014; Yi et al., 2017). Another important aspect that should be considered 

when evaluating the quality of biomass as a fuel is its higher heating value (HHV). This 

parameter indicates the amount of energy released per unit mass when biomass is 

completely combusted and is expressed in MJ kg -1. In terms of modelling, the HHV is a key 

indicator for determining the energy efficiency of biomass and comparing it with other fuel 

types (Sheng and Azevedo, 2005). 
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The determination of key parameters of biomass fuel properties, such as the HHV, is 

often a time-consuming and cost-intensive process. This process traditionally requires the 

use of advanced laboratory equipment and empirical methods (Boumanchar et al., 2019). 

Therefore, there is a growing interest in developing mathematical models that would enable 

faster and more efficient prediction of these properties without the need for expensive and 

time-consuming laboratory analyses. Recently, the use of deep learning (DL) and machine 

learning (ML) principles has gained popularity as a means of developing models to predict 

HHV. These techniques, which use advanced ML algorithms, enable faster and more 

accurate modelling of biomass properties (Zhang et al., 2020). Various non-linear 

mathematical models are used for this purpose, including higher-order polynomial models 

(HOP), artificial neural networks (ANN), random forest regression (RFR) and support vector 

machine (SVM) models. Among the models mentioned above, ANN models are of particular 

interest. These models, which are part of the broader field of artificial intelligence (AI), can 

analyse large amounts of data and identify non-linear relationships between different 

variables, enabling a better understanding and more accurate prediction of biomass fuel 

properties (Giwa et al., 2015; Dashti et al., 2019). 

ANN differ from traditional regression models in their ability to link dependent and 

independent variables in a non-linear way, facilitating the detection of complex interactions 

between them (Pattanayak et al., 2021). Although the application of ANNs in analysing 

biomass data is still in its early stages, interest in their application and development is 

growing (Vardiambasis et al., 2020). ANNs work based on a specific structure (architecture), 

a learning algorithm and a transfer function. By selecting and analysing input data, models 

can transform this data to produce the desired output, in this case, an estimation of HHV. 

The effectiveness of ANNs is confirmed by comparing literature-based and model-calculated 

values (Grossi and Buscema, 2007; Kartal and Oezveren, 2020). Among the different forms 

of ANN, the multi-layer perceptron (MLP) network is considered one of the most effective in 

prediction and estimation (Pattanayak et al., 2021).  

SVM is based on theories of averaging and are algorithms that can be used for 

classification or regression through supervised learning. SVM, used as a regression models 

make predictions by splitting the data into parts for learning and testing the model and are 

suitable for predicting calorific value (García Nieto et al., 2019). In their research, the authors 

Dubey and Guruviah (2022) create an SVM model for the prediction and optimisation of HHV 

in agricultural biomass based on proximate analysis data. The SVM model resulted in a 

lower prediction error compared to other developed models, with a coefficient of 

determination (R2) of 0.905. 
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RFRs are an effective tool in prediction and are defined as learning algorithms that use 

multiple random decision branches to predict the output value concerning the mean value of 

the processed data. They include prediction methods in the form of classification and 

regression and use a finite (fixed) number of random branches (Scornet et al., 2015; Biau 

and Scornet, 2016). The authors emphasize that for modelling it is important to determine 

intervals that contain values with a certain prediction probability. Zhang et al., (2020) and 

Callejón-Ferre et al. (2014) predict HHV biomass in their research using structural analysis 

data (content of cellulose, hemicellulose, and lignin). For the prediction, they used regression 

models based on the input data of the different types of biomass. Authors proved that there 

is a correlation between HHV and the analysed samples. Akdeniz et al. (2018) developed an 

algorithm for HHV prediction of different lignocellulosic raw materials based on lignin and 

extractives (residual materials of biomass) input data. The literature values were compared 

with the calculated values, and it was found that the developed algorithm showed a greater 

ability to estimate compared to the offered models. In the research paper titled "Estimation of 

the higher heating values for lignocellulosic biofuels", the author evaluated the possibility of 

modelling the HHV of lignocellulosic biomass and biofuels through predictive models based 

on the input data from various analyses, including proximate, ultimate, and structural 

analyses. The proposed models varied in terms of R2 values for the input data from 

proximate analysis (R2 = 0.35-0.85), ultimate analysis (0.35 – 0.71) and structural analysis 

(0.64 – 0.90). Through the statistical analysis conducted, the authors concluded that none of 

the proposed equations is universal and that it depends on the type of input data, while the 

highest degree of data agreement was achieved with models based on structural analysis 

(Petrova, 2021). In their research, Maksimuk et al. (2021) used 30 regression models for 

prediction using structural analysis data of agricultural biomass from literature sources. The 

regression correlation models predicted HHV with a lower model error compared to the 

offered developed models, which makes the model acceptable when applying the estimated 

energy value. Ozveren (2017) developed the ANN model for HHV biomass prediction in his 

research, which demonstrates the possibility of applying the model to estimate the calorific 

properties of biomass, for the ability to solve non-linear and complex calculation problems. 

Obafemi et al. (2019) used data from the ultimate analysis of biomass (content of carbon, 

hydrogen, nitrogen, sulphur, and oxygen) to create the ANN model. The model was used to 

predict the HHV and energy properties to assess the possibility of converting waste into 

useful energy. Through their research, they demonstrate the applicability of the created 

algorithm in predicting energy properties. In the scientific study by Kartal and Ozveren 

(2020), the ANN model was developed to predict the gasification effect of different types of 

biomass. The developed model successfully predicted the process and predicted HHV with 

minimal model error compared to the developed models offered in the literature. 
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The aim of this dissertation is to develop and evaluate non-linear mathematical models 

for the precise modelling of HHV biomass based on literature datasets. The expected 

scientific contribution is the creation of universal, reliable models that optimise the time and 

resources required for modelling, regardless of the type of biomass. The research aims to 

identify the models with the least error in modelling and enable comparison between HOP, 

ANN, RFR and SVM models to enrich the existing understanding and practice in this 

important field. 

 

1.1. Hypotheses and research goals 
 

1.1.1. Hypothesis: 
 

1. The models based on the set of input variables of proximate analysis have the lowest 

modelling error in all non-linear models examined compared to the sets of input variables of 

ultimate and structural analysis. 

2. The ANN models have a lower error in modelling HHV of biomass than HOP, RFR and 

SVM, regardless of the set of input variables. 

 

1.1.2. Objectives: 

 

1. Development of new non-linear mathematical models in the form of HOP, ANN, RFR and 

SVM for the modelling of HHV biomass based on input variables from laboratory analyses 

(obtained from the literature). 

2. Comparison of the newly developed non-linear models and determination of the lowest 

error in HHV modelling concerning different sets of input variables. 
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2. REVIEW OF RELEVANT LITERATURE 
 

2.1. Biomass 
 

The use of current fossil fuels and their negative impact on the climate have searched 

sustainable, RES urgent. As Tun et al. (2019) emphasise, given the speed of climate change 

and environmental degradation, it is necessary to focus on renewable energy sources. 

Sustainable energy production is becoming increasingly important in the transition from 

traditional fossil fuels to renewable sources. Burg et al. (2018) state that biomass as a 

renewable source offers various applications, not only in the generation of electricity and 

thermal energy, but also as a fuel. Biomass is, therefore, versatile in the energy sector. In 

view of the growing demand for sustainable energy sources, biomass and its various 

applications are playing an increasingly important role. Moreover, as the use of biomass 

expands, it is crucial to understand the different types and potentials of different forms of 

agricultural biomass to make the most of this renewable resource (Perea-Moreno et al., 

2019). 

Agricultural biomass plays a particularly important role in the energy sector and has 

considerable production potential. Bilandžija et al. (2018) point to a steadily growing interest 

in the use of solid agricultural biomass for energy production, particularly in Europe. This 

trend points to the increasing role of biomass in the continent's sustainable energy future. 

According to Avcıoğlu et al. (2019), residues from agricultural production, such as straw 

residues, forest prunings and others, are also increasingly in focus worldwide as a RES. The 

authors add that the energy potential of biomass can vary depending on the different 

characteristics and proximate properties of the biomass itself. This opens the scope for 

further research and optimization to make better use of these renewable resources. 

Considering the growing needs for energy production from biomass, the properties of 

which can be determined experimentally, the need to develop mathematical models for 

calorific value estimation is emphasized to save time and reduce process costs (Kalivodová 

et al., 2022). As numerous models offered in the literature have a certain degree of modelling 

errors, it is difficult to create a universal model, i.e. one that is suitable for biomass with 

different (variable) chemical properties. ML models offer the possibility of solving the 

estimation of the calorific value of biomass with a lower error rate, as they can solve complex 

non-linear relationships between the data (Afolabi et al., 2022). 
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2.2. Agricultural and wood biomass 
 

Agricultural biomass as a source of renewable energy is a key element in efforts to 

reduce greenhouse gas emissions and promote sustainable development. In a global context 

increasingly characterised by environmental challenges, the inclusion of biomass in energy 

paradigms is of great importance. When analysing the benefits it offers, it can be concluded 

that agricultural biomass has several advantages compared to other RES. Primarily, 

agricultural biomass is widely available and can be produced locally, allowing countries and 

regions to utilise local resources, thereby reducing dependence on conventional energy 

sources. In addition, the utilisation of agricultural biomass does not require significant 

investment in infrastructure projects. The use of agricultural biomass can lead to a reduction 

of waste generated by agricultural activities, which has environmental benefits (Zhang et al., 

2019; Saini et al., 2015). Agricultural biomass can be divided into biomass from energy crops 

(grown solely for energy production), agricultural residues, which includes crop residues such 

as straw and husks, and various organic wastes from agricultural production (Sivabalan et 

al., 2021). By processing various feedstocks from agricultural biomass such as corn stalks, 

wheat straw, bagasse, rice husks, fruit husks, corn cobs, husks, and various residues, the 

need for conventional fuel sources can be greatly reduced. In addition, the agricultural 

biomass has potential as a raw material for processing into value-added products (Kumar 

Sarangi et al., 2023). 

On the other hand, although agricultural biomass has numerous benefits, it also comes 

with certain challenges. The collection and transport of biomass can incur significant costs, 

and the energy value of biomass can vary depending on the type of harvest and processing 

method. There is also a risk of side effects such as increased competition for land and water 

resources, which can lead to environmental and socioeconomic tensions. In terms of 

applications, agricultural biomass can be used in several areas, including the production of 

energy, bioproducts and biofuels. Forecasts indicate that the use of agricultural biomass will 

increase in the future in parallel with global efforts to reduce greenhouse gas emissions. 

However, the future of this energy segment will depend on several factors, including 

technological innovation, regulatory frameworks, and market demand (Searchinger et al., 

2008; Mohanty et al., 2002). 

Wood biomass is one of the most important renewable feedstocks for energy production 

due to its potential benefits in reducing greenhouse gas emissions and promoting a 

sustainable energy economy. Forest biomass can be divided into primary and secondary. 

Primary biomass includes materials obtained directly from the forest, such as whole logs and 
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trees, post-cutting residues, and thinner stems and saplings. Secondary forest biomass 

refers to the waste generated from the processing of wood in sawmills and other industrial 

facilities, including sawdust, crisps, bark, and boards and residues (Titus et al., 2021). The 

technical feasibility of its use as a raw material for bioenergy and bioproducts has been 

thoroughly investigated. Wood pellets, which are made from pressed sawdust and other 

wood residues, are a popular form of this type of biomass. However, despite the potential 

reduction in greenhouse gas emissions, unsustainable management of this biomass can 

have negative consequences for the environment, such as deforestation and other 

environmental problems (White, 2010). 

 

2.3. Biomass properties 
 

As one of the most important RES, biomass has been analysed in detail, including its 

proximate, ultimate, structural analysis and energy properties. The calorific value is the most 

important characteristic for determining fuel quality and indicates the amount of energy that is 

released when a raw material is completely burnt. It is expressed in MJ kg -1. In general, the 

HHV varies between 17 and 23 MJ kg-1 for the lignocellulosic biomass, according to Esteves 

et al. (2023). The direct combustion of biomass produces minimal amounts of greenhouse 

gases and other potentially hazardous pollutant emissions compared to conventional (fossil) 

fuels. The emission of substances released during combustion of biomass varies 

considerably depending on the composition of the biomass, the type of combustion plant 

used and the settings of the combustion process. The most important factor influencing 

combustion efficiency and the number of emissions is the composition of the biomass 

burned. The properties of biomass are reflected in its composition, and the analysis of 

properties in terms of energy modelling includes ultimate (carbon - C, hydrogen - H, nitrogen 

- N, oxygen - O and sulphur - S), proximate (fixed carbon - FC, volatiles - VM and ash) and 

structural analysis (cellulose, hemicellulose, and lignin). It is important to point out that the 

presence of these elements in biomass varies greatly depending on the type of biomass itself 

and the conditions of its cultivation (Lisý et al., 2020). Biomass with a high moisture content 

(MC) has a lower density, which leads to a reduction in the energy required for water 

evaporation. The percentage of MC has a major impact on the transport, storage and 

processing of biomass, as well as on the amount of energy obtained from a given material 

(Schaffer et al., 2015). The chemical composition of biomass is used to characterise it in 

terms of fuel quality. Different groups of biomass are considered in the analysis, e.g. 

agricultural and wood biomass. The chemical elements in the biomass can be classified as 
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micro and macro elements according to their concentrations. It is important to emphasise 

that there are significant differences in the chemical composition of different types of biomass 

2.3.1. Calorimetric analysis 

 

The calorific value can be a higher heating value (HHV) or a lower heating value (LHV). 

The HHV refers to the heat (energy) extracted from the fuel during combustion with 

condensed (generated) vapour. LHV contains the latent heat of the water vapour that is 

produced during combustion by the condensation of water vapour into a liquid. The 

relationship between the HHV and LHV is such that LHV represents the correction of HHV 

due to moisture in the fuel (biomass). In general, the calorific value can be determined 

experimentally using an adiabatic bomb calorimeter, which measures the enthalpy change 

between reactants (fuel) and products (water). However, measuring the energy value is a 

complex and time-consuming process that requires the use of specialised equipment (Acar 

and Ayanoglu, 2012). 

Analysing the raw material (biomass) is an important process to determine the quality 

and the possibility of using it as fuel. The heating value of biomass is measured with an 

adiabatic bomb calorimeter using the ASTM standard (White, 2017). In calorimetry, the 

biomass is burned in a bomb and the heat of combustion is transferred to the medium 

outside the tank. Thermometers were used to measure the temperature of the water and the 

energy value, which was then calculated based on the change in water temperature and the 

correction formula (Wang et al., 2021). Adiabatic bomb calorimeters are sometimes referred 

to as quasi-adiabatic due to the existing heat exchange with the environment. The 

exchanged heat is calculated using Newton's law of heat transfer or more complex equations 

describing heat transfer. Calorimeters that measure heat in the way described above are 

called passive adiabatic, i.e. isoperibolic, when they are in a constant temperature 

environment (Horvat, 2015). When measuring with an adiabatic calorimeter, different 

temperatures and energy units are used. To reduce the possibility of errors in the 

interpretation of the data, it is necessary to understand the relationships of the individual data 

within the process. The adiabatic bomb calorimeter is a standard instrument for measuring 

the energy value of solid fuels and liquid combustible samples. The heating value 

(combustion energy value) of a particular sample can be defined as the amount of energy 

released during complete combustion at a constant volume. The HHV is the most important 

parameter in the planning and modelling of energy operations for systems based on biomass 

fuels. In addition, the HHV is an important parameter in optimising the conversion of biomass 

into a useful fuel that can be subjected to various conditions. The experimental method of 

determination is always expensive and time-consuming, so it is recommended to use 
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different mathematical models in the evaluation (Xing et al., 2019). The importance of HHV 

modelling lies in the possibility of accelerated assessment, the design of energy systems and 

the possibility of using raw materials as fuel (Taki and Rohani, 2022). 

 

2.3.2. Ultimate analysis 

 

Ultimate analysis of the composition of biomass enables the precise determination of the 

content of key elements such as C, H, N, S and O in biomass. With this method, it is possible 

to obtain information about the composition of biomass on a dry and ash-free basis, allowing 

a deeper understanding of its chemical structure and potential applications. A device known 

as an elemental analyser is used to determine the elemental composition. The process 

involves taking a small sample of biomass, the weight of which is known in advance, in 

powder form. This sample is then burnt in a strictly controlled atmosphere. During this 

process, different elements in the biomass react and turn into gases: Carbon turns into CO2, 

hydrogen turns into water (H2O), nitrogen turns into (NO) and S turns into SO2. After 

combustion, the released gases flow out of the chamber via a specific segment of heated 

high-purity copper. This phase of the process is crucial because the copper acts as an 

oxygen scavenger and simultaneously converts NOx to N2. The final reduction and 

quantification of the elements C, H, N and S is based on the identification and measurement 

of the formed gases CO2, H2O, N2 and SO2 (Shadangi et al., 2023). 

Modelling the energy values of biomass based on ultimate analysis provides a highly 

relevant data set, as this method does not require analysis of the microelements, but focuses 

solely on the percentage of the elements C, H, N, S and O. This approach has long been at 

the centre of scientific interest, particularly in the theoretical estimation of the calorific value 

of coal, as demonstrated by the research of Ozyuguran et al. (2018). The ultimate analysis, 

defined as the chemical composition of a given fuel, allows the creation of models that are 

more precise and widely accepted compared to those based on microelements, according to 

the studies by Onochie et al. (2023) and Bychkov et al. (2017). This method is thus crucial 

for accurately determining the heating value of biomass with the aim of understanding and 

utilisation of this RES. 
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2.3.3. Structural analysis 

 

Lignocellulosic biomass mostly consists of a structure comprising cellulose, 

hemicellulose, and lignin. The distribution of these components in the biomass is a complex 

structure and depends on the type of biomass. Knowing the composition of biomass, i.e. its 

structure, is a very important aspect for its use in industrial applications (Díez et al., 2020). 

Cellulose is a plant component composed of elongated chains of at least 500 glucose 

molecules, which is why it is categorised as a polysaccharide. Over time, cellulose has 

gained a significant role as a raw material in modern industry. It is used in various sectors, 

including the fibre and textile industries, paper production, animal nutrition, cosmetics, and 

pharmaceuticals. In the plant structure, cellulose is often associated with two main 

components: Hemicellulose and lignin, which are amorphous by nature. High concentrations 

of cellulose can be detected in agricultural residues such as palm chaff, cocoa pods, plantain 

peels, banana leaves, corncobs, wood, and sugar beet waste (Pinto et al., 2022). 

Hemicellulose is a type of polysaccharide found in plant cell walls and is the second most 

abundant renewable polymer in lignocellulosic materials after cellulose. It is characterised as 

a heteropolysaccharide with a complex structure containing various monosaccharides such 

as glucose, xylose, mannose, galactose, arabinose, rhamnose and acids such as glucuronic 

and galacturonic acid, the proportion of which varies depending on the source (Peng et al., 

2012). Lignin contributes significantly to the recalcitrance of lignocellulosic biomass, which 

hinders its conversion into biofuels and other value-added products (Watkins et al., 2015). 
The ratio of cellulose to lignin is a crucial factor in determining the suitability of a particular 

plant species for energy production. For combustion processes, a lower proportion of 

cellulose and hemicellulose in the biomass is preferable, i.e. biomass with a higher lignin 

content is more suitable for direct combustion processes (Voća et al., 2021). The lignin 

content influences the increase in the energy value of biomass, which is why its valorisation 

is important (Beaucamp et al., 2022). Dorez et al., (2014) emphasises that the effect of 

increasing the flammability of the material is associated with an increased lignin content. 
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2.3.4. Proximate analysis 

 

Proximate analyses provide information about the content of volatile matter (VM), 

moisture content (MC), ash, and fixed carbon (FC) in the biomass. A detailed procedure is 

required for the exact determination of these components. The equipment used for this 

process includes a temperature-controlled muffle furnace, a highly sensitive analytical 

balance, a porcelain dish, a temperature-controlled precision dryer and a desicator. The 

equipment ensures accuracy and consistency of results and provides a comprehensive 

understanding of the composition of the biomass. The biomass contains a high proportion of 

VM, which is calculated using a formula that considers the differences in the mass of the 

sample. The ash content in the biomass represents the inorganic residues that remain after 

combustion, the presence of which depends on the origin of the plant. Ash measurement 

provides information about the inorganic composition of the biomass (Shadangi et al., 2023). 

Higher-quality fuels produced from biomass have a lower ash content. With an increase in 

ash, the calorific value of the biomass decreases (Kwaghger and Iortyer, 2017). When 

modelling biomass and its potential applications in energy-related scenarios, the proximate 

analysis dataset is often used (Nimmanterdwong et al., 2021).  

Various studies have demonstrated the feasibility of using primary analysis data for 

estimating the HHV of biomass (Chen et al., 2022). Estimation of HHV based on proximate 

analysis is suitable data set as it reduces the cost and time required for determination under 

laboratory conditions (Roy and Ray, 2020). This method streamlines the process of 

assessing biomass HHV for energy applications, making it an attractive option for 

researchers and practitioners looking for efficient and cost-effective analytical approaches. 
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2.4. Mathematical modelling 
 

Mathematical modelling is a key element in scientific and technical research for the 

quantitative analysis and interpretation of phenomena. Regression models, as a subset of 

mathematical modelling methods, are particularly useful in engineering applications such as 

modelling the calorific value of different types of fuels or materials. These models allow the 

identification and quantification of relationships between dependent and independent 

variables, leading to reliable predictions and system optimization. In the last decade, non-

linear regression models have been increasingly used, as they are able to model complex 

relationships between different variables that are often inherently non-linear. This type of 

modelling provides greater accuracy in predictions, which is critical in advanced engineering 

applications where small deviations can lead to significant changes in system performance. 

The importance of energy conservation and proper design is particularly evident in the 

context of power generation.  

One of the increasingly applicable tools in the field of energy problem modelling is 

machine learning. In recent years, machine learning has emerged as a powerful tool for 

extracting insights from data and refers to a set of techniques that can automatically extract 

patterns in data, usually large amounts of data. Due to recent improvements in methods, 

computing infrastructure and data availability, these techniques have become ubiquitous in 

numerous applications (Donti and Kolter, 2021). Research in the field of computer 

architecture has focused on the energy efficiency of production processes for decades. The 

field of machine learning, on the other hand, has mostly focussed on creating highly accurate 

models, often without considering energy consumption. This is particularly pronounced in the 

field of deep learning, where the complexity and precision of the model take precedence over 

energy efficiency. Such models are becoming increasingly demanding in terms of computing 

and memory resources. Their creation requires considerable computing power, especially in 

the phase of training on large data sets. During implementation, on the other hand, these 

models are often used multiple times (García-Martín et al., 2019). The development of 

precise models enables better planning and optimization of the energy production process, 

resulting in higher energy efficiency and lower resource consumption. In addition, 

mathematical modelling offers the possibility to simulate different scenarios and conditions, 

facilitating informed decision-making. Integration with advanced machine learning algorithms 

can further improve the accuracy of predictions and thus ensure the sustainability of energy 

systems. 
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2.4.1. Linear modelling 

 

In the field of statistical modelling, regression analysis is used to evaluate relationships 

between variables. The focus is on the relationship between the dependent variable and one 

or more independent variables or predictors. In the above context, the main objective is to 

find a mathematical model that best explains the relationships being analysed. Regression 

analysis helps to understand how the dependent variable changes about changes in the 

independent variables, assuming that other variables are held constant. This approach 

enables the estimation of the values of the dependent variable based on the specified 

independent variables. The main objective is to formulate a regression function that provides 

accurate predictions and allows interpretation of the relationships between dependent and 

independent variables. In certain circumstances, regression analysis can provide a basis for 

concluding causal relationships between variables (Sarmento and Costa, 2017). 

 

2.4.2. Non-linear modelling 

 

Non-linear modelling is a statistical method for representing complex relationships 

between variables that do not follow a linear pattern. It is used in various fields to understand 

and predict non-linear phenomena. Although non-linear models can be more accurate than 

linear models when dealing with complex data, they are often more difficult to estimate and 

interpret. Nonlinear models can be computationally intensive and require more data 

compared to linear models. There are different types of non-linear models, which can be 

categorised according to the form of the function, the method of parameter estimation, the 

type and complexity of the model. These models use different methods to model non-linear 

relationships between variables (Abbasi Nozari et al., 2012; Guo and Ringwood, 2021; 

Mustapa et al., 2019). 

Linear and non-linear mathematical models differ in the type of relationship they describe 

between independent and dependent variables. A linear model assumes that the relationship 

between the variables is linear, which means that a change in the independent variable 

causes a proportional change in the dependent variable. A non-linear model, on the other 

hand, describes a situation in which the relationship between variables cannot be predicted 

by a linear regression line (Paredes-Astudillo et al., 2022). Models are defined as linear if all 

operators of the mathematical model express linearity. For example, in a statistical linear 

model, the relationship is assumed to be linear for the parameters, but it does not have to be 

linear for the predictors. On the other hand, a differential equation is linear if it can be written 
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with linear differential operators, although it may also contain non-linear expressions. On the 

contrary, a mathematically programmed model is considered linear if the objective and 

constraint functions are completely represented by linear equations. If one or more objective 

or constraint functions are represented by a non-linear equation, then the model is said to be 

non-linear (Crooke et al., 2002). The main difference between linear and nonlinear models 

lies in their ability to model complex relationships. While linear models are simple and easier 

to interpret, they are often limited when it comes to describing real, often complex, 

phenomena. Linearity "in the parameters" means that although the predictors themselves 

can be transformed or combined in a non-linear way, the relationship between the 

transformed predictors and the expected response remains linear (Olive, 2017). In 

comparison, non-linear models can describe a much broader range of relationships, 

including those where changes in the independent variables cause non-linear, often 

unpredictable changes in the dependent variables (Crawley, 2012). 

 

2.5. Non-linear and machine learning regression models 
 

In the modern data environment, linear methods often do not provide satisfactory results 

due to the inherent complexity of the phenomena being analysed. Nonlinear regression 

models allow for more flexible and precise predictions and interpretations of data, although 

their implementation and analysis can be computationally more demanding and conceptually 

more complex. Artificial neural networks (ANNs) represent a highly adaptable class of 

models that simulate the way biological neurons process information. They can be used in a 

variety of tasks and areas, from image classification to financial market predictions. Support 

vector models (SVM) are another class of nonlinear models that focus on finding the optimal 

hyperplane for splitting or approximating data. Although they are often used for classification 

tasks, they can also be adapted to regression problems and provide accurate and robust 

ways of modelling nonlinear relationships. Random Forest Regression Models (RFR) are a 

method that combines the predictions of multiple underlying models to achieve higher 

accuracy and robustness. These models are particularly useful when working with data that 

is noisy, incomplete or contains many features. Higher degree polynomials offer a simpler 

but extremely useful way of modelling non-linear relationships. While they do not offer the 

same level of flexibility as the previously mentioned models, they are often easier to interpret 

and implement, making them suitable for quick analyses and research. 
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2.5.1. Artificial neural network (ANN) models 

 

In the field of big data management and with the increase of computing capacity, ANN 

show high performance in solving classification and regression problems (Cao et al., 2018).  

ANN can be defined as a system of interconnected artificial neurons on which the 

operations of this model are based. In general, models are built with three layers: Input, 

hidden and output. When the neurons receive information from different inputs, they 

generate nonlinearity through activation functions. It is important to emphasise that ANN 

models are highly dependent on the data on which they are trained (Chen et al., 2020). ANN 

drawing inspiration from the neurological structures of the human brain, serve as 

sophisticated information processing systems that excel in identifying and processing 

patterns. Notably, ANNs possess the capability to continuously enhance their performance 

by analysing outcomes from previously resolved tasks (Haglin et al., 2019). These models 

have gained widespread recognition as universal evaluation tools across a multitude of 

fields, such as pattern recognition, processing, function finding, and process simulation. Their 

suitability is particularly noted when the primary objectives encompass modelling, predicting, 

evaluating specific outcomes, and unravelling the complexities inherent in nonlinear data 

interactions (Puig-Arnavat and Bruno, 2015). 

Machine learning methods, especially ANN, show significant capabilities and capacities 

in modelling and assessment (Masi et al., 2021). Choosing the right topology of a neural 

network is crucial for the optimal application of ANN and deep learning (DL) models. It is 

often recommended to choose a feed-forward network with a larger number of neurons, as 

numerous empirical indicators suggest that it is more efficient to optimise and adjust the 

weights while avoiding the risk of overfitting. The choice of the correct network topology is 

determined by trial and error (Mesroghli et al., 2009). The selection of the appropriate loss 

function is also an essential component for the efficiency of ANN and DL models. There are 

general guidelines for selecting an appropriate loss function depending on the type of 

response variable, whether it is continuous, binary, or categorical. (Montesinos López et al., 

2022). The choice of the number of hidden layers is crucial for the configuration of a deep 

learning model. Although the universal approximation theorem suggests that a single hidden 

layer with many neurons can approximate any function, in practice multiple layers are often 

required, especially when the data is not linearly separable. If the data is linearly separable, 

deep learning models and ANN may not be necessary, but a single hidden layer is sufficient 

for most problems. The number of neurons in the network is crucial: too few neurons in the 

hidden layers can lead to underfitting, while too many neurons can cause severe overfitting. 

In the input layer, the number of neurons is determined by the number of input features, 
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while in the output layer, the number of neurons is determined by the number of output 

variables or the number of classes of the response variable if it is ordinal or categorical. The 

learning rate adjusts the weights and thresholds (bias) of the neural network so that a given 

input to the network produces the desired output. (Montesinos López et al., 2022). 

In situations where huge amounts of information need to be processed, ANN become 

important tools, as conventional processing methods are often not efficient enough for such 

tasks. When using ANN, the desired output value is based on a comparison between 

predicted and actual data (Jat et al., 2018). One of the main advantages of using ANNs is 

their flexibility in modelling and the ability to efficiently deal with robust data sets. They 

enable the identification and modelling of complex nonlinear relationships between input and 

output variables. However, for the model to be effective, it is crucial to select and accurately 

adjust the network parameters for each specific application (Abdolrasol et al., 2021). One of 

the most popular and efficient types of ANN is the multilayer perceptron (MLP), which 

consists of input, hidden and output layers. The main advantage of this approach lies in the 

flexibility of customising the network architecture based on the input specifications and the 

target output. The intrinsic properties of the ANN offer the possibility of autonomous learning 

through iterative cycles. Through this process, the ANN continuously adapts to the available 

information and efficiently implements complex mathematical transformations for precise 

data processing. The structure of the ANN, including the number of neurons and hidden 

layers, is not static. To achieve the optimal network architecture that best fits a particular 

problem, it is often necessary to make a number of experimental adjustments (Ozveren, 

2017). Depending on the architecture, topology and learning method, ANN models can be 

categorised in different ways (Mesroghli et al., 2009). The learning process can either be 

supervised, where the model has access to the target output data, or unsupervised, where 

the model must discover the data structure without clearly defined outputs (Cinar, 2020). The 

methodology of the ANN model includes at the beginning the definition and purpose of the 

model, the determination of the input data, the division of the data into learning and testing 

parts, the definition of the network structure, the selection of an appropriate algorithm, the 

standard methods for converting input variables into input data, the learning process and the 

testing process (Vanneschi and Silva, 2023).  

The main advantage of the ANN model is the ability to find complex relationships 

between variables, with a high tolerance for missing data and the possibility of real-time 

evaluation (Bermejo et al., 2019). The evaluation of the training process is one of the most 

important operations for the general improvement of the modelling process and the 

possibility of real application of the ANN model (Lujano-Rojas et al., 2023). In addition to 

training the model, the ANN also requires the adjustment of the hyperparameters, i.e. the 
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optimisation of the parameters that determine the operation of the algorithm, so that the 

model must be trained in several iterations. The error and accuracy of the model are highly 

dependent on the optimisation of the model, therefore increasing the performance of the 

ANN model is based on the trial-and-error method (Matveeva and Bychkov, 2022). ANN 

consists of interconnected layers consisting of artificial neurons (nodes), connections, weight 

coefficients, bias thresholds, and activation and transfer functions. They are interconnected 

and their "strength" is determined by the weighting coefficient. These connections are 

analogous to the connections in the human brain (Casas, 2019). In recent years, research 

has focused heavily on improving artificial intelligence algorithms using various optimisation 

techniques. One of these methods is ANN with multiple hidden layers. ANN models are 

applicable in various fields. Due to their adaptability and software engineering, such 

algorithms are the preferred machine learning option in the field of learning and estimating 

desired output values (Abdolrasol et al., 2021). ANNs are considered nonlinear statistical 

models that work on the principle of a biological neuron and are considered effective, useful, 

and successful in the field of nonlinear problems and pattern recognition (Du and Swamy, 

2006). 

 

2.5.1.1. Application of mathematical functions in ANN modelling 

 

From a feasibility point of view, nonlinear activation functions are key elements of 

hardware implementations in ANN. The research mainly focuses on various aspects such as 

accuracy, the use of approximation methods and the cost of implementing these systems, 

considering analogue and digital platforms. Accurate implementations of nonlinear activation 

functions have a significant impact on improving the learning and generalisation capabilities 

of ANNs (Shakiba and Zhou, 2021). Exponential functions are often used as activation 

functions in ANNs because they can model phenomena that increase or decrease at a 

constant rate, representing the activation of an artificial neuron in response to a stimulus. In 

addition, exponential functions can be used to model the probability of an event, which is 

particularly useful in sentiment analysis. These functions are often combined with other 

activation functions such as sigmoidal and step functions (ReLu) to create more complex 

neural network structures that can model a wider range of phenomena (Urban, 2018). 

Sigmoidal functions are mathematical functions used in ANN models and generally in 

deep learning models. This function assigns an output range of 0-1 to each input value X. As 

its curve has the shape of the letter S, it is ideal for "squeezing" input values into this range. 

The properties of the sigmoidal function include the range, which includes all real numbers, 
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and the horizontal asymptotes to which the function tends when X tends towards positive or 

negative infinity. In addition, the function has an inflexion point at x=0, where the curve 

changes from concave to convex or vice versa. Because of these properties, the sigmoidal 

function is particularly useful in tasks that require output probabilities (Hamdan and Roach, 

2022). An identity function is an activation function that produces an output value that is 

identical to its input value. Unlike other activation functions such as the sigmoidal or step 

function (ReLU), the identity function does not transform the input values, so it can be 

calculated and implemented quickly. However, due to its simplicity, it is often not useful in 

complex neural networks where a higher degree of significance is required. It has a constant 

derivative equal to 1, which facilitates the learning process, but can lead to problems such as 

vanishing or exploding gradients in deep neural networks. The domain and codomain of the 

function include all real numbers, so it can accept and generate any real number (Wanto et 

al., 2017). 

In the context of ANN modelling, a tangential hyperbolic function is often used as an 

activation function. This function has the range of all real numbers in the interval from -1 to 1 

(Shakiba and Zhou, 2021). 

2.5.2. Support vector machine (SVM) models 

 

SVM represent a robust machine learning algorithm that is crucial for pattern recognition. 

It is particularly useful for nonlinear modelling of high-dimensional data with a limited number 

of samples. SVM works by solving inner product operations in a high-dimensional feature 

space. This is achieved by using the kernel function in the low-dimensional space, which 

avoids the so-called chaos of dimensionality. The value of the kernel function measures the 

similarity between the feature vector and the training and prediction samples. There are three 

primary kernel functions within SVM, and the selection of the appropriate kernel function is 

critical for successful nonlinear classification or regression. The selection of the optimal 

decision function, which is essential for the SVM categorisation model, is performed as a 

solution to an inequality constrained quadratic optimisation problem. This optimal decision 

function, which is global and unique due to the convex nature of the optimisation problem, 

allows SVM to avoid local minima and provides a sparse solution with a simple geometric 

interpretation (Wang et al., 2019). The SVM decision function is actually an optimal 

hyperplane, which is used to separate observations belonging to one class from another 

based-on patterns of information about these observations, called features. This hyperplane 

is used to determine the most likely label for unknown data. The features used for 

hyperplane inference are usually not raw data, but mostly derived data resulting from some 

kind of interpolation during the feature selection phase. The features are also referenced by 
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coordinates that are based on their relationships to each other and form support vectors. As 

with other forms of machine learning, working with SVM is about reconciling two 

complementary goals: maximising the percentage of labels correctly assigned by the 

classifier to new examples (i.e. optimising its accuracy) and ensuring that the classifier is 

generalisable to new data (i.e. optimising its reproducibility). While the first point is limited by 

the informativeness of the features used, the second point is limited by the number of unique 

examples used to train the model (Pisner and Schnyer, 2019). 

Three basic phases are distinguished in the SVM analysis: 

1. Selection of features 

2. Training and testing of regressors or classifiers 

3. Evaluation of performance 

In addition, Gholami and Fakhari (2017) mention the steps of SVM implementation in the 

field of nonlinear modelling: 

• Sample matrix preparation: For regression analysis, the independent (input 

parameters) and dependent data (target parameters) are often presented in separate 

matrix columns. The data can then be further divided into current, test and validation 

parts. 

• Selecting the kernel function: It is necessary to select the function that generates the 

hyperplane that is furthest away from all the data in the set. 

• Selection of parameters: The use of SVM involves the selection of key parameters 

such as the kernel function, the trade-off parameter, and the error insensitivity (ε), 

which is achieved by applying a validation procedure to determine them. 

• Performance of the learning algorithm: During model training, SVM uses formulas to 

compute Lagrange multipliers that identify support vectors to select the optimal 

hyperplane from the input and output data. 

• Data classification and modelling: Lagrange multipliers and support vectors enable 

accurate classification and modelling of new data. A large modelling error may 

indicate a need for improvement in feature extraction, feature selection or parameter 

estimation. 

 

In the feature selection phase, the original raw data is converted into a set of features 

that can be used as input for the SVM. The training and testing phase of the classifier 

involves the use of examples for which the classes are already known in advance. This 

enables supervised model learning, and the information is used to model or predict new 
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class labels. The final phase of evaluation is to check how accurately the model can classify 

the data (Pisner and Schnyer, 2019). Zoppis et al., (2018) state that MFAs have made an 

outstanding contribution to various scientific fields where statistical inference is currently 

applied to many important problems, as evidenced by the exponential growth in the 

application of the model. SVMs are intuitive models that, by identifying the maximum edge of 

the hyperplane separating positive from negative classes, classify new elements depending 

on the "half-space" in which they are located concerning the separating hyperplane. 

 

2.5.3. Random forest regression (RFR) models 

 

Random forest models for regression are a combination of tree predictors such that each 

tree depends on the values of a random vector, where the data is processed independently 

of the same distribution for all trees in the forest. In contrast to classification models, where 

trees are created based on categorical target variables, RFR models are based on numerical 

values of the target variables, resulting in output data in numerical values (Jaiswal and 

Samikannu, 2017). The margin of error for the above models converges towards the limit as 

the number of "trees" in the model increases. RFR enables the unique predictive accuracy 

and interpretability of the model as an ML model. With the help of random sampling and 

ensemble strategies, a more accurate prediction and generalisation of the model is achieved. 

The key features of the RFR model are the ability to predict the output value in different 

applications, measure the importance of each feature (input data), and identify the closeness 

of pairs in model training (Qi, 2012).  

The error of the classifier depends on the weighting of the individual trees in the model as 

well as on the correlation between them (Scornet, 2015). RFR are easy to fit to nonlinearities 

in the data and therefore usually have a higher predictive power. In terms of regression and 

modelling, they are suitable for medium and large data sets. When the number of 

independent variables is larger than the number of observed variables, models such as linear 

and logistic regression do not show high performance as the number of parameters to be 

estimated exceeds the number of observed parameters. RFR show high effectiveness in 

such cases as they do not use all predictor variables at once. Fitting the RFR model involves 

choosing optimal values for key hyperparameters such as the number of trees, the maximum 

depth, the number of features at each split, and the minimum number of samples required for 

a split. The most effective fitting strategies include grid search, random search and model-

based sequential optimisation (Probst et al., 2019). The RFR algorithm is based on grounded 

trees, which serve as its building blocks. In a tree-based model, a given data set is 
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recursively divided into two groups based on a specific criterion until a predetermined 

stopping condition is met. At the bottom of the decision trees are the so-called leaves or end 

nodes. These models work by choosing the best possible way to split the data at each step 

by analysing how the data behaves about the target variable. Each split creates two new 

nodes, and the process continues until a stopping condition is reached. This may be the 

maximum depth of the tree, the minimum number of samples required for further splitting, or 

when no improvement in prediction can be achieved (Schonlau and Zou, 2020). 

 

2.5.4. High order polynomials 

 

Approximation theory is a classical branch of mathematics that investigates the extent to 

which functions can be approximated by simpler functional forms. It has found numerous 

applications in computer science. Most of these applications of approximation theory focus 

on the approximation of functions to polynomials using a uniform norm (or infinity norm) (Bun 

and Steinke, 2015). The problem of finding the roots of a polynomial equation is important 

because many calculations in engineering and scientific computing can be traced back to it. 

Solving functional equations is a problem that often arises in practical applications. Many 

calculations in technical and scientific computing can be reduced to the problem of solving a 

polynomial equation. Polynomials can approximate or fit all continuous functions very well. 

Therefore, the study of solving polynomial equations is of great theoretical and practical 

importance. As we all know, the roots of a polynomial of degree higher than 4 cannot be 

expressed by a formula (Wang et al., 2011).  

The approximation by a polynomial of a higher degree has several advantages over the 

approximation by a polynomial of a lower degree. For example, as the length of the interval 

increases, the approximation errors decrease. The number of segments on the contour is 

reduced and the information characters are calculated more accurately. The higher the 

degree of the polynomial, the smaller the number of mesh nodes and the better the accuracy 

and quality of the approximation. The higher the degree of the polynomial, the smaller the 

number of nodes and the better the final solution within the approximation interval. At the 

same time, increasing the degree of the polynomial usually leads to a loss of stability, a 

significant increase in the error of the predicted value during extrapolation, an increase in the 

order of the derivatives used, and an increase in the complexity of the calculation. Therefore, 

formulas for smoothing polynomials of higher degree are almost completely avoided. The 

approximation by a higher order polynomial makes it possible to optimise the number of 

segments on the contour and to obtain the analytical dependence of the curvature for a more 
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precise calculation of informative signs that are invariant with respect to geometric 

transformations. The effectiveness of polynomial approximation and smoothing depends on 

many factors, the most important form being the polynomial (Dikusar, 2018). 

 

2.5.5. Model optimization 

 

Prediction and optimisation form the basis for many real analytical problems that arise in 

various disciplines. Due to their complexity, they are usually treated sequentially in existing 

studies, with the prediction problem being solved first, followed by optimisation. In this 

paradigm, unknown parameters in an optimisation problem are predicted by a prediction 

model and then used in the optimisation model to make optimal decisions (Yan and Wang, 

2022). Mathematical programming techniques include various methods and programme 

structures for solving linear and nonlinear models. The applicability of these methods 

depends on the mathematical structure of the model and the system being analysed. Each 

method has its advantages and limitations, so it is important to know the different types of 

optimisation methods (Loucks and van Beek, 2017). Once the model has been created, the 

next step is its optimisation, a process that is crucial for achieving optimal solutions and 

improving system performance (DiMaio and Chiu, 2016). Model optimisation involves the 

application of various mathematical and computational methods to maximise or minimise a 

particular function within the model to find the most efficient solution to a given problem. The 

use of these optimisation techniques can be greatly facilitated by integrating them into 

software decision support systems. This enables faster and more accurate analyses and 

provides insights into complex problems, improving the quality of decisions (Hewitt and 

Frejinger, 2020). This integrated approach enables users to effectively solve problems in 

various fields, from finance and logistics to engineering and resource management, using 

advanced algorithms and computer modelling to achieve optimal results. In the age of 

machine learning, performance based on accuracy and calculation time is one of the most 

important parameters in optimisation.  

Numerous parameters associated with machine learning modelling methods are time-

consuming, so standard optimisation methods are not considered suitable. In the ML model, 

two types of parameters are subject to optimisation: hyperparameters and model 

parameters. The hyperparameters are set before and during model training, while the model 

parameters are changed during learning. The quality of the prediction model depends on the 

configuration of all hyperparameters (Hossain and Timmer, 2021). 
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2.5.6. Sensitivity analysis 

 

Sensitivity analysis in ML models is a multi-faceted approach that involves identifying 

important features in a data set, understanding the impact of each feature on the prediction 

of the model, and estimating the variance in model performance for different sizes of data 

sets. In the context of modelling, hyperparameter sensitivity analysis is applied to identify the 

correct parameters for model performance (Naik and Kiran, 2021; Kim et al., 2022). Global 

sensitivity analysis (GSA) plays a role in identifying the input variables that significantly affect 

the behaviour of the model under the conditions of nonlinearity. Sensitivity analysis is also 

key to interpreting ML models by analysing the effects of the input variables and their 

(relative) importance in determining the output value (La Rocca and Perna, 2022). The 

complexity of ML models, especially those with a larger number of parameters, poses a 

particular challenge in the application of sensitivity analysis due to the fundamental 

differences between the different model types (Razavi et al., 2021). In application, sensitivity 

analysis involves assessing the dependence of a model's output on its inputs, often using a 

relevance factor to measure the impact of each parameter on the model's output (Baghban et 

al., 2019). 

Sensitivity analysis is a cornerstone of modelling and simulation and provides invaluable 

insight into the influence and relative importance of input parameters on model predictions. 

Using global sensitivity methods, as described in detail by Li et al. (2016), this approach 

quantitatively assesses how different input variables affect model outcomes, deepening the 

understanding of their importance in the overall modelling process. Khoshroo et al. (2018) 

also highlight the role of sensitivity analysis in setting research priorities by identifying and 

ranking the most influential factors that significantly improve the quality of results. This type 

of analysis is crucial for assessing the impact of variations in input variables on output 

results, an essential step in improving the accuracy and reliability of models. In the field of 

ANN, sensitivity analysis becomes a key tool to analyse and identify the input variables that 

significantly affect the performance of the network. This is particularly important for complex 

models where the accuracy and reliability of the results are of paramount importance. By 

identifying key variables, sensitivity analysis helps to optimise these models and leads to 

more accurate and reliable predictions. Machine learning (ML) algorithms are commonly 

used tools in engineering practice due to their enormous application potential in various 

nonlinear problems, especially in the management of high-dimensional data. Handling such 

data poses a challenge in analysing and making decisions. For this reason, the method of 

global sensitivity analysis is used, which reveals the meaning of individual variables and the 

relationship between input and output data to discover optimal patterns (Zhang, 2019). Puig-
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Arnavat and Bruno (2015) emphasise the importance of using sensitivity analysis based on 

ANN models in biomass-related modelling processes to uncover the importance of individual 

variables. This integration of sensitivity analysis with ML and ANN models in biomass 

research and other high-dimensional data scenarios improves the effectiveness and 

accuracy of modelling efforts, making it an important component in modern engineering 

practice. 
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3. RESULTS AND DISCUSSION 
 

3.1. Review of published qualification papers 
 

3.1.1. Artificial Neural Network as a Tool for Estimation of the Higher Heating 

Value of Miscanthus Based on Ultimate Analysis 

 

Miscanthus is a perennial energy crop that produces high yields and has the potential to 

be converted into energy. The ultimate analysis determines the composition of the biomass 

and the energy value in terms of the higher heating value (HHV), which is the most important 

parameter in determining the quality of the fuel. In this study, an artificial neural network 

(ANN) model based on the principle of supervised learning was developed to predict the 

HHV of miscanthus biomass. The developed ANN model was compared with the models of 

predictive regression models (suggested from the literature) and the accuracy of the 

developed model was determined by the coefficient of determination. The paper presents 

data from 192 miscanthus biomass samples based on ultimate analysis and HHV. The 

developed model showed good properties and the possibility of prediction with high accuracy 

(R2 = 0.77). The paper proves the possibility of using ANN models in practical application in 

determining fuel properties of biomass energy crops and greater accuracy in predicting HHV 

than the regression models offered in the literature. 

Keywords: artificial neural network; prediction; miscanthus; energy potential 
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3.1.2. Energy Potentials of Agricultural Biomass and the Possibility of Modelling 

Using RFR and SVM Models 

 

Agricultural biomass is one of the most important renewable energy sources. As a 

byproduct of corn, soybean and sunflower production, large amounts of biomass are 

produced that can be used as an energy source through conversion. In order to assess the 

quality and the possibility of the use of biomass, its composition and calorific value must be 

determined. The use of nonlinear models allows for an easier estimation of the energy 

properties of biomass concerning certain input and output parameters. In this paper, RFR 

(Random Forest Regression) and SVM (Support Vector Machine) models were developed to 

determine their capabilities in estimating the HHV (higher heating value) of biomass based 

on input parameters of ultimate analysis. The developed models showed good performance 

in terms of HHV estimation, confirmed by the coefficient of determination for the RFR (R2 = 

0.79) and SVM (R2 = 0.93) models. The developed models have shown promising results in 

accurately predicting the HHV of biomass from various sources. The use of these algorithms 

for biomass energy prediction has the potential for further development. 

Keywords: agricultural biomass; higher heating value; machine learning; estimation; energy 

potential. 
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3.1.3. Comparison of Different Machine Learning Models for Modelling the Higher 

Heating Value of Biomass 

 

The aim of this study was to investigate the potential of using structural analysis 

parameters for estimating the higher heating value (HHV) of biomass by obtaining 

information on the composition of cellulose, lignin, and hemicellulose. To achieve this goal, 

several nonlinear mathematical models were developed, including polynomials, support 

vector machines (SVMs), random forest regression (RFR) and artificial neural networks 

(ANN) for predicting HHV. The performed statistical analysis “goodness of fit” showed that 

the ANN model has the best performance in terms of coefficient of determination (R2 = 0.90) 

and the lowest level of model error for the parameters Χ2 (0.25), RMSE (0.50), and MPE 

(2.22). Thus, the ANN model was identified as the most appropriate model for determining 

the HHV of different biomass based on the specified input parameters. In conclusion, the 

results of this study demonstrate the potential of using structural analysis parameters as 

input for HHV modelling, which is a promising approach for the field of biomass energy 

production. The development of the model ANN and the comparative analysis of the different 

models provide important insights for future research in this field. 

Keywords: structural analysis; support vector machine; artificial neural network; random 

forest regression; high order polynomials. 
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3.1.4. Assessing the properties of Miscanthus x Giganteus under varying levels 

of ash fertilization treatment and regression neural network insight into 

calorific value 

 

The aim of the study was to investigate the changes in ultimate, proximate analysis and 

calorific properties of Miscanthus x Giganteus with three types of planting materials (two 

rhizomes - R1 and R2 - and one seedling – S) and three ash fertiliser treatments (P0, P2, and 

P5) were included in the study. The research further examined their effects on crop yield, 

stem height and various chemical properties. The results showed that the maximum yield 

was obtained with the R1 x P2 plant type, while the minimum yield was recorded with the R2 

x P2 plant type. In addition, the greatest mean stem height (3.34 m) was recorded for the R2 

x P5 plant type. Significant differences were also found in the chemical components between 

the plant types and treatments. For example, the highest ash content of 2.25% was found in 

plant type 'S' x P5, while the highest coke content of 14.48 % was found in plant type R1 x P5. 

The statistical analysis confirmed that planting material and ash fertilisation had significant 

influence on the physicochemical properties of Miscanthus x Giganteus. This consequently 

affects the calorific value, with the mean higher and lower heating value being 18.32 and 

17.04 MJ/kg, respectively. The neural regression network models showed robust predictive 

performance for the higher (HHV) and lower heating value LHV, with low chi-square values 

(Χ2) and high coefficients of determination (R2). 

Key words: Miscanthus x Giganteus, fertilisation, energy properties, artificial neural network, 

modelling. 
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3.1.5. Biomass higher heating value prediction: machine learning insights into 

ultimate, proximate, and structural analysis datasets 

 

In this study machine learning (ML) models have been employed to predict the higher 

heating value (HHV) of biomass by utilizing input variables derived from ultimate, proximate, 

and structural analyses. In total, 180 models were developed, with 124 utilizing ultimate 

analysis data, 28 based on proximate analysis, and 28 relying on structural analysis. Various 

ML techniques, including polynomial models (SOP), support vector machines (SVM), random 

forest regression (RFR), and artificial neural networks (ANN), were employed for analysis. 

The study found that ANN models, when “fed” with FC and VM data, provided considerable 

accuracy in prediction results, with the best results obtained with 2-12-1 architecture 

(R2 = 0.96). In addition, a separate model configuration that processed inputs on biomass 

constituents such as cellulose, lignin, and hemicellulose showed remarkable agreement with 

empirical data. Additional findings revealed that the models created using SOP (R2 = 0.95), 

SVM (R2 = 0.95), and RFR (R2 = 0.90) demonstrated minimal discrepancies when predicting 

HHV. This study provides significant insights into the investigation of biomass analysis 

techniques employing ML tools, paving the way for future research aimed at constructing a 

robust tool for HHV prediction. Subsequent models may explore integrating inputs from 

diverse analysis methods and leveraging advanced machine learning techniques to enhance 

accuracy further. 

Keywords: energy properties; mathematical modelling; ultimate analysis; proximate 

analysis; structural analysis. 
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3.2. Unified discussion 
 

3.2.1. Basic characteristics of collected data after statistical analysis 

 

The research began with the crucial step of data collection, followed by an important 

phase of data quality control to ensure the reliability and quality of the database - a process 

that is critical in data analysis due to the potential challenges in data quality (Hellerstein and 

Berkeley, 2008). The performance of ML models is highly dependent on data quality, which 

is ensured by the process of error labeling, imbalance, scoring, and data homogenisation, 

transformation, and cleaning (Collins et al., 2018). ). The next step was to categorise the 

collected data into meaningful units, in particular agricultural and woody biomass, in order to 

identify possible differences. This categorisation facilitated the use of analysis of variance 

(ANOVA) and, if necessary, the Tukey post hoc HSD test to further explore the data. To 

determine the mean values of the data by category, the mean was used as a measure of the 

central tendency. A correlation analysis was also carried out to confirm the relationship 

between the variables analysed. 

The articles present models processed on the basis of different types of input data: 

ultimate analysis is discussed in Articles 1, 2, 4 and 5, structural analysis in articles 3 and 5, 

and proximate analysis in Article 5. 

In Article 1 (3.1.1.), the analysis focussed on 16 samples of Miscanthus. The data from 

the ultimate biomass analysis were statistically processed and the following ranges of mean 

values were determined: Nitrogen (N) (0.18-0.31%), Carbon (C) (50.90-51.76%), Sulphur (S) 

(0.09-0.21%), Hydrogen (H) (5.31-5.89%), Oxygen (O) (41.99-42.91%) and Higher Heating 

Value (HHV) (17.83 – 18.51 MJ kg-1).  

In Article 2 (3.1.2.), the research aimed to develop models using corn, soybean, and 

sunflower biomass data. This study determined mean values for elements and calorific 

values, such as C (49.99%), H (5.44%), N (1.44%), S (0.12%), O (40.08%) and HHV (19.94 

MJ kg-1). A correlation analysis was performed to assess the relationship and strength of 

association between the ultimate analysis variables and HHV. A significant positive 

correlation was found, especially between C, H, and HHV, which was also found in the 

literature (Noushabadi et al., 2021). Furthermore, research by Yang et al. (2023) confirmed 

these results and emphasised that the carbon content in biomass fuels significantly affects 

HHV.  
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In Article 4 (3.1.4.), a statistical analysis was presented using ANOVA that showed 

differences in the ultimate analysis of the biomass composition analysis of Miscanthus. The 

mean values were obtained for N (0.72%), C (51.18%), S (0.06%), H (5.84%), O (42.19%) 

and HHV (18.32 MJ kg-1).  

Conversely, in Article 5, the data were divided into agricultural and wood biomass and the 

mean percentage of C (47.61 and 48.13%), H (5.52 and 5.37%), N (1.27 and 0.70%), S (0.26 

and 0.33%), O (39.87 and 42.75%) and HHV (18.73 and 18.89 MJ kg -1) were analysed. The 

only statistically significant difference between the analysed groups was found in the nitrogen 

content, which was significantly higher in the agricultural biomass category.  

In Article 3 (3.1.3.), a comprehensive correlation analysis was performed to examine the 

relationship between the structural components of biomass, namely hemicellulose, lignin, 

and cellulose, and their HHV. The analysis revealed remarkably high positive correlation 

coefficients with HHV: 0.74 for hemicellulose, 0.88 for lignin and 0.89 for cellulose. These 

results indicate that each of these structural elements of biomass - hemicellulose, lignin, and 

cellulose - significantly and positively influences the energy value of biomass, showing a 

strong correlation between the composition of biomass and its potential as an energy source. 

Esteves et al., (2023) state the influence of individual components of the structural 

composition of biomass on the energy value and conclude that the HHV is mainly influenced 

by the lignin content of the raw material. Gani et al., (2024) state that the energy value of 

biomass can be determined by analysing lignin and cellulose. The analysis showed that 

biomass with a higher cellulose content impairs flammability, while a higher lignin content 

increases the calorific value. Soomro et al., (2021) state that the HHV of biomass rich in 

cellulose is on average 17.28 – 18.58 MJ kg -1, while the HHV of biomass rich in lignin is 

19.07 – 22.50 MJ kg -1. 

Article number 5 (3.1.5.) of the study series focuses not only on the ultimate biomass 

analysis but also delves into both proximate and structural analyses. The proximate analysis, 

which assesses the basic characteristics of the biomass, did not reveal any statistically 

significant differences between agricultural and wood biomass. The mean values determined 

for the entire dataset are as follows: fixed carbon (FC) 14.66%, volatile matter (HT) 74.93% 

and ash content 18.21%. The structural analysis conducted in Article 5 focussed on 

determining the percentage of cellulose, hemicellulose, and lignin in the biomass samples. 

Mean values were determined for cellulose (46.67%), lignin (15.82%) and hemicellulose 

(23.45%).  
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3.2.2. Performance of the models in estimating the HHV based on ultimate 

analysis input data 

 

In Article 1 (3.1.1.), data collection included 16 different samples of Miscanthus and 

resulted in a total of 192 data points. The focus was on quantifying the variables of the 

ultimate analysis, an essential step in the creation of an ANN model. This model was 

specifically developed to estimate the HHV of the biomass. To evaluate the efficiency of this 

ANN model, it was compared with a range of empirical equations commonly used to estimate 

the HHV. For this comparison, 10 different empirical models were selected from scientific 

databases reflecting the breadth of research in this field, including notable works by Sheng 

and Azevedo (2005), Nhuchhen and Afzal (2017) and Callejón-Ferre et al. (2011). In Article 1 

(3.1.1.) the performance of both the developed ANN model and the empirical models was 

rigorously evaluated using the statistical method "Goodness of fit". This analysis involved the 

calculation of various statistical parameters to determine how well each model estimated the 

HHV of Miscanthus. Interestingly, the results showed that the models generally did not 

perform satisfactorily in estimating the HHV. The best-fitting model among them showed the 

following statistical indicators: Χ2 = 0.17, RMSE = 0.01 and R2 = 0.47. Despite the relatively 

low modelling error of this model, it did not provide satisfactory results, as evidenced by the 

low overlap between the actual and predicted data. In contrast, the ANN model developed in 

this study showed a greater ability to model HHV, as indicated by a higher R2 value of 0.77. 

This result not only emphasises the potential of ANNs in accurately predicting biomass 

characteristics but also highlights the limitations of conventional empirical models in dealing 

with the complex nature of biomass fuels such as Miscanthus. This was also confirmed by 

the research conducted by Guleç et al., (2022), in which they obtained the highest accuracy 

model by ANN with a high R2 for learning (0.96) and testing (0.92). The authors conclude that 

the ANN model is suitable and shows high performance in HHV modelling, which can be 

further improved by adjusting the activation functions, algorithms, number of neurons and 

randomisation. The superior performance of the ANN model in this context suggests that it is 

suitable for a more accurate estimation of HHV, thus providing a more reliable tool for 

biomass energy researchers and practitioners.  

In the published paper number 2 (3.1.2.), a slightly different approach was taken, 

focusing on the comparison of RFR and SVM models in terms of their ability to model the 

HHV of biomass. In this paper, 51 data points from the ultimate analysis were used. The 

SVM model showed superior performance with a significant degree of overlap between the 

collected and estimated data, as indicated by a high R2 of 0.93. In addition, the SVM model 

showed a relatively low modelling error, with a Χ2 value of 0.82 and a RMSE of 0.90. In 
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contrast, the RFR model showed higher values for Χ2 (5.99) and RMSE (2.43), associated 

with a lower R2 value of 0.79. This comparison suggests that the SVM model was more 

effective in modelling HHV in this study, especially with smaller data sets, which is also 

confirmed by Ozyuğuran et al. (2018).  

Furthermore, the effectiveness of an ANN model in estimating the HHV of biomass was 

investigated in Article 4 (3.1.4.). This study found that the ANN model had the highest 

performance in terms of overlap between real and modelled data, as evidenced by an 

impressive R2 value of 0.96. In addition, the model had a remarkably low modelling error, 

with an Χ2 value of 0.01 and an RMSE value of 0.03. These results led to the conclusion that 

the ANN model was best suited for modelling the energy value of biomass, outperforming the 

capabilities of both the RFR and SVM models in this application. The high accuracy and low 

error rates of the ANN model underline its potential as a powerful tool for predicting the 

energy value of biomass, especially under varying conditions of growing. This insight into the 

calorific value of Miscanthus through the ANN model opens new avenues for optimising 

biomass use for energy production and provides a more accurate and reliable method for 

estimating the potential energy yield of biomass fuels.  

The research presented in article number 5 (3.1.5.) aims to test and determine the most 

appropriate model ANN, RFR, SVM and HOP for analysing biomass. This study focussed on 

using the input variables from the ultimate analysis to evaluate the effectiveness of each 

model. The ANN model proved to be the front-runner in terms of modelling ability with an Χ2 

value of 1.02, an RMSE value of 1.01 and a high R2 value of 0.90 using all variables from the 

ultimate analysis. Higher order polynomials also showed their usefulness in nonlinear 

modelling with an Χ2 of 1.77, an RMSE of 1.33 and an R2 of 0.82, indicating their 

effectiveness in handling complex data structures. In comparison, the SVM and RFR models 

showed slightly lower modelling performance. In a parallel study conducted by Noushabadi 

et al. (2021), the focus was on estimating the HHV of different types of biomass fuels based 

on elemental analysis input variables. In this study, various machine learning techniques and 

hybrid equations were used as basic tools. The evaluation of the ANN model they developed 

yielded remarkable statistical results: an R2 of 0.92, an RMSE of 1.08 and a standard 

deviation (SD) of 3.76. Although their model showed better performance in terms of R2, the 

model constructed in Article 5 (3.1.5.) had a lower error in estimating the HHV biomass when 

modelling errors and residual analysis were considered. Olatunji et al. (2019) also 

contributed to the research on HHV biomass estimation through a multilayer perceptron 

network model based on the inputs of elemental analysis. They developed hybrid ANN 

models and used the RMSE as a measure of model error. The model error (RMSE) for their 

ANN model with elastic backpropagation was 3.59, while the ANN model with the Levenberg-
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Marquardt algorithm had an RMSE of 3.10. In comprehensive studies by Xing et al. (2019), 

the R2 (0.90) and RMSE (3.55) values for ANN models were determined based on elemental 

analysis input data. Comparing the ML models developed in these various studies with the 

empirical equations available for estimating the HHV, ANN models prove to be the most 

suitable for modelling, especially about the elemental analysis input dataset. This suitability is 

reflected in the lowest modelling error and the high degree of model agreement with the real 

data.  

These results from Article number 5 and the corroborating studies emphasise the 

increasing reliability and precision of ANN models in biomass energy research and show that 

they are capable of handling complex data sets with higher accuracy than traditional 

methods. These advances in modelling techniques are crucial for improving the predictability 

and efficiency of biomass energy use and opening new avenues for sustainable energy 

research and development. 

 

3.2.3. Performance of the models in estimating the HHV based on proximate 

analysis input data 

 

In Article 5 (3.1.5.), a comprehensive analysis was conducted in which 28 nonlinear 

models were created based on the input data from proximate analyses. These models were 

evenly divided into four types: ANN, SVM, RFR and HOP. Using the combinatorial method, 

which ensures that members are not repeated, these models were systematically developed 

to cover all possible combinations of the three variables from the proximate analysis (FC, HT, 

and Ash). The performance of these models was rigorously evaluated using a range of 

statistical metrics, including Χ2, RMSE, MBE, MPE, SSE, AARD, R2, skewness, kurtosis, SD, 

and variance. This approach provides a holistic overview of the effectiveness and accuracy 

of each model. Seven different ANN models were developed as part of the study, focussing 

on different combinations of the input variables. Three models included either one or two 

variables, and one model used all three variables. Analysis of the statistical fit of these 

models revealed that the model with two input variables (FC and HT) performed best, 

achieving low modelling error (Χ2 = 0.41; RMSE = 0.64) and high accuracy (R2 = 0.96). 

Conversely, the model with only one input variable (HT) showed the worst performance in 

modelling HHV biomass (Χ2 = 9.04; RMSE = 3.00; R2 = 0.19). Further research by Veza et 

al. (2022) focused on the accurate estimation of HHV biomass using proximate analysis. 

Several ANN models were developed, each based on different algorithms. The Levenberg–

Marquardt (LM) ANN model proved to be the most effective, as shown by a high R2 (0.94) 
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and a low RMSE (0.99). Geleç et al (2022) also developed a regression ANN model for 

modelling HHV biomass using different activation functions such as Tansig, Logsig and 

Poslin. This model achieved satisfactory accuracy in both the test and training series (R2 = 

0.82 - 0.87). As for the SVM models in the study, the best fitting SVM model was developed 

using two input variables from the proximate analysis dataset (FC and PE). This model 

showed a low modelling error (Χ2 = 0.62 and RMSE = 0.79) and a high degree of accuracy 

(R2 = 0.95). The least useful model for modelling HHV biomass was created with a single 

input variable (VM) and showed a high modelling error (Χ2 = 19.36 and RMSE = 4.39) and a 

low degree of overlap (R2 = 0.02). However, the model that included all variables in the 

dataset had the lowest modelling error, albeit with a slightly lower degree of overlap (R2 = 

0.94). Keybondorian et al. (2017) undertook extensive research to estimate HHV biomass 

using proximate analysis, specifically the proportions of FC, VM and ash. Using the hybrid 

least SVM algorithm, they developed a model that proved to be robust and reliable in 

estimating the energy value of different biomass types, as evidenced by its RMSE (1.03) and 

R2 (0.93). Xing et al. (2019) reported a slightly higher modelling error in their study (RMSE = 

4.67 and R2 = 0.85), highlighting the need for further advances in SVM models to assess the 

energy parameters of biomass. This collective investigation of different studies highlights the 

importance and potential of using different modelling approaches, in particular ANN and 

SVM, to accurately estimate the HHV of biomass based on proximate analyses. The results 

provide valuable insights into the effectiveness of different modelling types and 

configurations and pave the way for improved and more reliable methods for biomass energy 

assessment. The RFR performed impressively, especially when modelled with a combination 

of FC and ash and with the complete set of variables from the dataset. Despite a relatively 

high modelling error (Χ2 = 2.50), the RFR model achieved a high level of accuracy, as 

indicated by a high R2 value (0.90). However, the performance of the model decreased when 

only HT was used as an input variable, resulting in a higher modelling error (Χ2 = 10.47; 

RMSE = 3.23) and a significantly lower R2 (0.21). Afolabi et al. (2022) followed a 

comprehensive approach by integrating the input variables of elemental and physicochemical 

analysis. Their study included several models, including the RFR model. The RFR model 

was characterised by its low error rate (RMSE = 1.37), making it the most accurate model for 

estimating HHV biomass, mainly due to its minimal error values. Dubey and Guruviah, (2023) 

also compared the differences of RFR and ANN models in terms of HHV biomass modelling 

error by the input variables of the proximate analysis and determined the RMSE modelling 

error for ANN (0.186) and RFR model (0.101) but found that better model performance can 

be achieved by a metaheuristic optimisation approach.  
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The HOP models were also found to be effective for HHV estimation, especially for the 

proximate analysis data. The best-fitting HOP model using FC and ash as input variables 

showed a low modelling error (Χ2 = 0.52; RMSE = 0.72) and a high R2 (0.95). Models using 

VM and ash also showed high accuracy (R2 = 0.94), and a model including all input variables 

achieved an R2 of 0.93. However, the least effective HOP model using only VM as input 

showed significant limitations in estimating HHV biomass (Χ2 = 10.09; RMSE = 3.17; R2 = 

0.08). These results highlight the importance of selecting appropriate modelling techniques to 

obtain accurate and reliable estimates of HHV biomass. While RFR models are 

advantageous for comprehensive data sets, HOP models are characterised by specific 

combinations of physicochemical variables. The integration of different data types, as shown 

by Afolabi et al. (2022), is crucial for improving the precision of biomass energy value 

estimates and provides a robust framework for accurate assessment of biomass energy 

parameters. The research in Article 5 suggests that ANN models with proximate analysis 

data have the highest modelling accuracy in terms of the ability to estimate HHV and a low 

modelling error compared to other models. It is also important to emphasise that the 

proximate analysis data set proved to be the most suitable for modelling the HHV for all 

model types. 

 

3.2.4. Performance of the models in estimating the HHV based on structural 

analysis input data 

 

Article number 3 (3.1.3.) of the study series focused on the investigation of nonlinear 

machine learning models (ANN, RFR, SVM and HOP) about input data sets from structural 

analysis, in particular the percentage of cellulose, hemicellulose, and lignin. Among these 

models, ANN proved to be the most effective, as indicated by a low modelling error (Χ2 = 

0.25, RMSE = 0.50) and a high degree of accuracy (R2 = 0.90). However, the other models, 

namely RFR (Χ2 = 0.29, RMSE = 0.54, R2 = 0.89), SVM (Χ2 = 0.35, RMSE = 0.59, R2 = 0.86) 

and HOP (Χ2 = 0.32, RMSE = 0.56, R2 = 0.87), showed slightly weaker modelling 

performance.  

A comprehensive approach was followed in Article 5 (3.1.5.), where 28 nonlinear models 

were created based on structural analysis input data. This dataset included seven models 

each for ANN, SVM, RFR and HOP. Using a combinatory to calculate the total number of 

models without repetition, the study analysed performance across all possible combinations 

of the three structural analysis variables. Statistical analysis in this article revealed that the 

best-fitting model for estimating HHV was constructed using all input variables, namely 
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cellulose, hemicellulose, and lignin. This model had the lowest modelling error (Χ2 = 0.26; 

RMSE = 0.51), combined with a high degree of data overlap (R2 = 0.91), highlighting its high 

reliability and precision. In the SVM analysis, the model that included all input variables 

proved to be the most efficient in terms of statistical parameters, characterised by the lowest 

Χ2 (0.79) and RMSE (0.89), indicating high accuracy and efficiency.  

Park et al., (2023) use models to predict the HHV of lignocellulosic biomass based on 

structural analysis data. When considering the entire data set, the authors report R2 = 0.54 – 

0.58 and RMSE = 1.38 to 1.54 and state that the model does not have good universal 

performance. On the other hand, after using two categories of data (woody and herbaceous 

biomass), results with a lower modelling error were obtained, with the best R2 being 0.78 – 

0.84 for woody biomass and 0.83 – 0.87 for herbaceous biomass.  Akdeniz et al., (2018) 

develop an algorithm for estimating the HHV of various lignocellulosic biomasses, 

considering the lignin and extract content as input data. The models are based on 11 

different lignocellulosic materials whose data were mainly obtained experimentally. The 

developed hybrid algorithm showed a satisfactory performance in terms of data overlap with 

R2 = 0.92, while the modelling errors SSE (0.30), MSE (0.30) and RMSE (0.55) showed a 

low error level.  

The models developed in Articles 3 (3.1.3.) and 5 (3.1.5.) have a higher generalisation 

ability and universality, as evidenced by the high level of the specific indicator of 

representativeness of the regression (R2) and a lower modelling error. This is an indication of 

the ability of the ML model to estimate the HHV based on the entire dataset, regardless of 

the categories of forest or agricultural biomass. 

The alignment of the analysis for the prediction of HHV biomass based on the input 

variables of the structural analysis is considered complex due to the high variability between 

the individual samples analysed, which is confirmed by Maksimuk et al. (2021), and they 

recommend the inclusion of additional variables and ultimate analysis to increase accuracy 

or reduce the error in modelling. From all this it can be concluded that ML models have a 

high generalisation ability and the possibility of a relatively good estimation of the HHV. 

However, to obtain a better model, further research should focus on adding input variables of 

ultimate and proximal analysis and determine which input parameters can provide an optimal 

model, i.e. the one with a lower modelling error. 
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3.2.5. Sensitivity analysis based on ANN model 

 

The practical use of sensitivity analysis is illustrated in paper number 1, where an ANN 

model was developed, and different prediction models were tested. Here, the Yoon model 

was used for sensitivity analysis to determine the relative importance of the input variables in 

predicting HHV. This analysis covered a range from -1 to 1 and examined the effects of 

variables such as C, H, N, S and O. The results showed that for the optimal sample (highest 

HHV value) there was an increase in S (68.89%) and C (3.13%) and a decrease in N (-

20.64%), H (-3.07%) and O (-4.27%).  Taki and Rohani, (2022) state that the variables C, O 

and S have no effect on the change in HHV, while the decrease in H and N affects the 

increase in energy value. The different results of the sensitivity analysis in this case are due 

to the different data set used in the HHV modelling, in their research Taki and Rohani, (2022) 

besides the ultimate analysis used both ash and H2O percentage as input variables. 

Similarly, Article 5 (3.1.5.) examined the effects of input variables on HHV output using 

an ANN model based on the ultimate analysis inputs. This study emphasised that HHV 

output is significantly influenced by the variables C, H, N, S and O. The sensitivity analysis 

showed that increasing the C, N and S content while reducing H and O significantly improved 

HHV output. The authors Kujawska et al. (2023), in research aimed at finding an improved 

HHV biomass prediction method using ANN models, come to slightly different conclusions, 

but also determine the most important variables as input data, i.e. those that would have the 

greatest (relative) influence on the output value. The authors indicate that the variables that 

have a significant influence on the HHV are C, H and S. The differences mentioned above 

are due to a greater variability of the individual components depending on the data set. In 

addition, the study investigated an ANN model that used proximate analysis data such as 

fixed carbon (FC) and volatile matter (VM) and showed high predictive accuracy for HHV. In 

the case of structural analysis, the ANN model showed that changes in cellulose (Cel) and 

lignin (Lig) together with a decrease in hemicellulose (Hem) significantly affected the HHV 

value. García Nieto et al. (2019) extended this research paradigm by focusing on predictive 

modelling of HHV biomass for energy process applications using different models of 

simulation units (SU). Their model included variables such as HT, FC and ratios of O/C and 

H/C as well as the temperature and duration of process reactivity. A comprehensive 

sensitivity analysis (0-100%) was performed on their hybrid model. FC and VM were found to 

have the greatest relative importance, confirming their crucial role in predictive modelling of 

HHV biomass. These studies emphasise the importance of sensitivity analysis for 

understanding model dynamics and improving prediction accuracy, especially in the context 

of biomass research. This scientific approach not only helps in model optimisation, but also 
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contributes significantly to the progress of predictive modelling in various fields, especially in 

energy-related applications. 

3.2.6. Research limitations and future approach 

 

Recent research in the field of HHV biomass modelling using different mathematical 

models (HOP, ANN, RFR, SVM) for different data sets (ultimate, proximate, and structural 

analysis) requires a critical examination of both their limitations and future research 

opportunities. Considering that ML algorithms and techniques are still emerging and 

constantly evolving, there is a continuing trend towards developing new learning methods 

and reducing computational time. ML also offers new opportunities in the fields of energy and 

agriculture (Pugliese et al., 2021). Modelling and prediction are a standard method for finding 

relationships between individual components in a large amount of data (Huang et al., 2020). 

Lai et al., (2020) states that in the future, the development of artificial intelligence models and 

adapted hybrid models will be widely used in the modelling and design of energy systems in 

the field of renewable energy sources.  

Table 1 shows a summary of the performance of the significant models in terms of R2 in 

relation to the type of model, the data set through 5 published scientific papers within the 

research. 

Table 1. Summary of the performance (R2) of the most significant models in relation to 

the type of data set processed by 5 published scientific papers. 

Input data ↓ 
Model 

↓ 

Article 1 

(3.1.1.) 

Article 2 

(3.1.2.) 

Article 3 

(3.1.3.) 

Article 4 

(3.1.4.) 

Article 5 

(3.1.5.) 

U
lti

m
at

e 

an
al

ys
is

 in
pu

t 

da
ta

 

ANN R2=0.77 - - R2=0.96 R2=0.90 

SVM - R2=0.93 - - R2=0.81 

RFR - R2=0.79 - - R2=0.76 

HOP - - - - R2=0.82 

Pr
ox

im
at

e 

an
al

ys
is

 in
pu

t 

da
ta

 

ANN - - - - R2=0.96 

SVM - - - - R2=0.95 

RFR - - - - R2=0.90 

HOP - - - - R2=0.95 

St
ru

ct
ur

al
 

an
al

ys
is

 in
pu

t 

da
ta

 

ANN - - R2=0.90 - R2=0.91 

SVM - - R2=0.86 - R2=0.74 

RFR - - R2=0.89 - R2=0.82 

HOP - - R2=0.87 - R2=0.79 
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The models created in the research based on the input data of the proximate analysis 

achieved the highest representativeness of the regression (Table 1). compared to the models 

based on the input data of the ultimate and structural analysis. Of all the models created in 

the research, the ANN model based on the input data from the proximity analysis showed the 

highest data agreement as determined by the coefficient of determination (R2=0.96). 

The models showed promising results, however, their applicability seems to be limited to 

certain biomass types and environmental conditions, indicating the need for broader 

validation. The specificity and generalisability of these models are crucial, especially for 

adaptation to different biomass types and ecological scenarios. An important limitation is the 

dependence of model accuracy on the quality and extent of the input data. In situations 

where certain biomass attributes are inadequately represented, model accuracy can suffer 

significantly, emphasising the importance of more comprehensive and representative data 

sets. In contrast to empirical equations tailored to specific biomass types, nonlinear ML 

models offer broader modelling benefits (Dashti et al., 2019).  

The complex interactions within biomass components pose significant challenges and 

affect the nuanced accuracy of the models. Future research should aim to expand the 

variables in the models to cover a wider range of biomass properties and thus reduce 

modelling errors (Brandić et al., 2023). When increasing R2, there is a possibility of potential 

overfitting and the stated requirement of using an adjusted R2 in order to take into account 

the number of variables and preserve the robustness of the model. Such an extension could 

improve the accuracy of the models and extend their applicability to different types of 

biomass, with better results being achieved by novel and hybrid models (Nhuchhen and 

Afzal, 2017). Testing the models under different ecological and geographical conditions is 

crucial for validating their effectiveness in different environments. This approach not only 

serves to refine and adapt current models but also promotes the development of more 

versatile tools for biomass modelling and thus makes an important contribution to energy 

modelling, especially to the sustainable management and use of biomass. The scientific 

contribution of the proposed research is significant, especially through the development of 

new, more reliable nonlinear mathematical models as universal tools for HHV prediction and 

modelling in agricultural and wood biomass. These models represent a significant advance in 

biomass research as they provide a deeper and more accurate understanding of the 

properties and effects of biomass. In addition, identifying the most efficient nonlinear model 

form that minimises error while reducing input variables, regardless of the type of biomass, 

provides a way to streamline HHV prediction and modelling processes. By reducing the 

amount of time and variables required, this research proposes a more efficient, cost-effective 
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approach to biomass modelling that has practical implications for simplifying and accelerating 

biomass analysis in various applications. 

After developing nonlinear mathematical models for modelling HHV biomass and 

analysing the results, it is crucial to understand their fundamental differences, i.e. their 

advantages and disadvantages in the context of modelling and prediction. In this research, 

ANN models proved to be the most efficient, whose main advantage lies in their ability to 

learn and understand deep interactions. This makes them ideal for complex tasks that 

require many numerical computations. However, inadequate tuning of the architecture can 

lead to overfitting and model cluttering, which increases modelling error (Hoang, 2023; 

Hosseinzadeh et al., 2020). On the other hand, RFR uses multiple trees for more robust 

prediction and shows advantages when working with unbalanced and missing data, allowing 

for better interpretability compared to more complex models. The main disadvantage of RFR 

is its lower efficiency on high-dimensional data (Xue et al., 2021; Fouedjio, 2020). SVM 

models that use a hyperplane for class separation are extremely efficient for high-

dimensional data where nonlinearity is present. Despite its high efficiency in solving 

nonlinear problems, SVM requires precise parameter tuning and optimisation, including 

kernel selection and learning hyperparameter tuning (Wang et al., 2019; Shao et al., 2020). 

As regression models, HOP models have a high ability to estimate and solve fewer complex 

tasks with a lower error level. However, the increasing amount and multidimensionality of 

data can lead to overfitting and poor generalisation on the test set (Morala et al., 2021). 

Ultimately, the choice of model depends on the specific requirements of the problem, the 

availability of data sets and the interpretability of the model. 
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CONCLUSIONS 
 

The results of this doctoral thesis provide scientific proof of the feasibility of modelling 

the higher heating value (HHV) of agricultural and wood biomass. During the research, 

various models were developed using artificial neural networks (ANN), random forest 

regression (RFR), high order polynomial (HOP) and support vector machine (SVM), all based 

on input datasets from ultimate, proximate, and structural analyses. The aim of the work was 

to develop new nonlinear mathematical models of different types for modelling the HHV of 

biomass based on sets of input variables from laboratory analyses. Furthermore, these newly 

developed models were to be compared and the smallest error in modelling the output value 

(HHV) concerning different sets of input variables was to be determined. On this basis, two 

hypotheses were initially formulated: 

1. Models based on the proximate analysis input dataset (FC, VM and ash) achieved the 

smallest modelling error compared to the ultimate analysis (C, H, N, S and O) and structural 

analysis (cellulose, hemicellulose, and lignin) datasets. This was demonstrated for all 

nonlinear models developed. During the research, the collected data were categorised into 

agricultural and wood biomass. Among the nonlinear models based on the input variables of 

the proximate analysis, the ANN model achieved the lowest modelling error (χ2=0.41, RMSE 

=0.64) and the highest data agreement (R2 = 0.96), while the SVM (χ2 = 0.61, RMSE =0.78, 

R2 = 0.94), RFR (χ2 = 6.56, RMSE = 2.56, R2 = 0.90) and HOP (χ2 = 0.52, RMSE = 0.72, R2 

= 0.95) showed significant overlap, but with slightly higher error values. The analysis also 

assessed models based on ultimate and structural analyses, with the most appropriate 

models showing a slightly higher error in modelling HHV and a lower level of data overlap (R2 

= 0.74 – 0.91). Based on the results of this study, hypothesis 1 is accepted, which states that 

all model types (ANN, RFR, SVM and HOP) have the lowest error when created with input 

variables from proximate analysis. 

2. ANN models have a lower error in modelling the higher heating value (HHV) of 

biomass compared to HOP models, RFR models and SVM models, regardless of the set of 

input variables. Throughout the study, the ANN models showed the highest level of 

agreement between the actual data and the model predictions (R2 = 0.90 – 0.96) and the 

lowest modelling error in terms of χ2 (0.26 – 1.02) and RMSE (Root Mean Square Error, 0.51 

– 1.01). On the other hand, the HOP models achieved a slightly lower degree of data overlap 

(R2 = 0.82 – 0.95) and a higher level of error in terms of χ2 (0.52 – 1.77) and RMSE (0.72 – 

1.33). SVM models generally achieve satisfactory performance (R2 = 0.74 – 0.95; χ2 = 0.62 – 

2.68 and RMSE = 0.79 – 1.63). The RFR models show a slightly higher error in relation to 

the modelling (R2 = 0.76 – 0.90; χ2 = 0.54 – 6.56 and RMSE = 0.73 – 2.56). On this basis, 
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the hypothesis was tested by comparing the newly developed nonlinear models using 

statistical parameters and it was proved that ANN models have the lowest modelling error 

compared to the other developed models. 

Additional conclusions were drawn based on the scope of this dissertation: 

• No statistically significant differences were found between the analysed collected 

data of the forestry and agricultural biomass categories in the ultimate and 

proximate analysis datasets, indicating the homogeneity of the data within both 

categories. 

• Between the variables of the structural analysis, there is a difference in the 

proportion of lignin, hemicellulose and HHV within the biomass categories, which 

are statistically significantly higher in the forest biomass category, while there is 

no statistically significant difference in the proportion of cellulose. 

• Using the method of combining without repeating the members and comparing 

the models with each other in terms of modelling error, the most appropriate 

models in terms of the number of input variables in the models were determined 

for each data set and each type of model developed: 

o Ultimate analysis: The most appropriate model is developed with all input 

variables (C, H, N, S and O) 

o Proximate analysis: The best-fit model was developed with 2 input 

variables (FC and VM) 

o Structural analysis: The best-fitting model was developed with all input 

variables (cellulose, hemicellulose, and lignin). 

 

• After performing a sensitivity analysis using Yoon's relative importance model, the 

influence of the input variables on the HHV was determined, so that in the 

ultimate analysis the optimal sample was found with an increase in C, N and S 

and a decrease in H and O. In the proximate analysis data set, the highest value 

of HHV was found in the samples with reduced FC and HT values, while in the 

structural analysis data set, an optimal pattern was determined with an increase in 

cellulose, hemicellulose, and lignin. 
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Artificial Neural Network as a Tool for Estimation of the Higher
Heating Value of Miscanthus Based on Ultimate Analysis
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Abstract: Miscanthus is a perennial energy crop that produces high yields and has the potential to
be converted into energy. The ultimate analysis determines the composition of the biomass and the
energy value in terms of the higher heating value (HHV), which is the most important parameter in
determining the quality of the fuel. In this study, an artificial neural network (ANN) model based on
the principle of supervised learning was developed to predict the HHV of miscanthus biomass. The
developed ANN model was compared with the models of predictive regression models (suggested
from the literature) and the accuracy of the developed model was determined by the coefficient of
determination. The paper presents data from 192 miscanthus biomass samples based on ultimate
analysis and HHV. The developed model showed good properties and the possibility of prediction
with high accuracy (R2 = 0.77). The paper proves the possibility of using ANN models in practical
application in determining fuel properties of biomass energy crops and greater accuracy in predicting
HHV than the regression models offered in the literature.

Keywords: artificial neural network; prediction; miscanthus; energy potential

MSC: 49M37

1. Introduction

Recently, energy crops have been increasingly used as raw materials for energy pro-
duction. Cultivation of energy crops is possible on neglected (marginal) agricultural land
that is not used for growing food crops. The production of thermal energy from biomass
is highly efficient and sustainable. The main advantage of using biofuel from biomass is
the reduction of greenhouse gases due to the neutrality of carbon dioxide. Research on
energy crops for biomass production shows the possibility of environmental protection and
economic production efficiency and provides a sustainable way of energy production [1].
By using biomass as an energy source, a significant reduction in greenhouse gas emissions
can be achieved. For this reason, biomass is considered a good substitute for fossil fuels
and has been increasingly studied recently [2]. According to the European Commission
(European Commission, Joint Research Centre), biomass is one of the most important
renewable energy sources in the EU and can provide the possibility of a reliable energy
supply. Miscanthus is an energy crop used to produce biomass, and its cultivation provides
high yields per unit area. Miscanthus is a perennial energy crop with low agrotechnical
requirements and can be grown on marginal soils. The quality of biomass-derived fuels is
influenced by the physical and chemical properties of the biomass. The content of carbon,
hydrogen, nitrogen, sulfur, and oxygen determined by ultimate analysis are important
chemical parameters that affects the quality of the fuel [3].

Ultimate analysis is important in determining the fuel properties [4]. The heating
value indicates the heat energy generated during combustion. HHV is an important energy
property of fuels that defines the energy efficiency of feedstock use and it is influenced by
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the chemical composition of the raw material. HHV is an important aspect in evaluating
the energy properties of biomass [5]. Biomass is composed of various elements, but carbon,
hydrogen, and oxygen make up a majority (97–99%) of the biomass content [5]. Empirical
methods for determining the composition and energy properties of biomass are time-
consuming and costly, so mathematical models have recently been developed that can
facilitate the prediction process. In determining the combustible properties of energy crops,
prescribed laboratory methods are used that provide high precision of the final results.
Recently, machine learning techniques have been increasingly used in the prediction of
HHV biomass. In research by Dai et al., [6] extreme learning machine (ELM) was used as
techniques with a signal forward neural network architecture to determine HHV biomass.
The model used shows high accuracy in predicting biomass fuel values. Knowing this,
ANN can be used as a mathematical tool for predicting the energy properties of biomass [7].
ANN as a form of non-linear models can calculate the HHV of miscanthus biomass, based
on ultimate analysis, with high precision and are recognized as a potential method for
predicting biomass heating value and reducing the time and cost of the process [8].

ANN belong to the field of artificial intelligence and have recently been increasingly
used as a mathematical tool that enables predictions with great precision. ANN have several
advantages over regression-based models. They can handle a large amount of aggregated
data and can detect nonlinear relationships between dependent and independent variants
as well as possible interactions between variables [9]. The application of ANN as a model
for biomass research is still at an early stage, but over time there is growing interest in its
use [10]. Özveren [11] conducted research in which an ANN model was developed as an
artificial intelligence model for predicting biomass with higher heating values. The research
shows the practical use of applying the ANN model as a method for predicting the energy
values of biomass. Olatunji et al. [12] used ultimate analysis data of different types of waste
in their research and developed the ANN model to predict the HHV. The model was used
to predict energy properties to evaluate the possibility of converting waste into useful
energy. Research has shown that algorithms can be successfully used in determining these
properties. In a study conducted by Kartal & Özveren [13], an ANN model was developed
to predict the gasification performance of different types of biomass. The developed model
successfully simulated the vegetation process with an acceptable margin of error. The
model also proved successful in predicting the calorific value of different biomass samples.
Before creating an ANN, the data used for model must be divided into sets for training,
testing, and validation. In several studies conducted using ANN models for prediction,
the authors divided data sets in the ratio of 70% for training, 15% for testing, and 15% for
model validation [14,15].

The aim of this work was to develop a ANN model for predicting HHV of miscanthus
biomass based on ultimate analysis. In addition, already developed regression models
for prediction of HHV were collected from the literature and used for the calculations.
The input data used for ANN and the predictive regression models were based on the
ultimate analysis and included data on the percentage of nitrogen (N), carbon (C), sulfur
(S), hydrogen (H), and oxygen (O). ANN was developed using the principle of supervised
learning and compared the obtained data on predicted HHV with the experimentally
obtained data on HHV. Yoon’s interpretation method was used to determine the relative
importance of the input parameters in the ANN model calculations. Dashti et al. [8] states
that it is of great importance to determine the factors of relevance (influence) of input
variables on the target result. Noushabadi et al. [16] states that the relevance factor shows
the influence of the elements of ultimate analysis (C, H, N, S, and O) on HHV. Positive and
negative values of each parameter are the result of an increase or decrease of the input
parameter on the output. The main objective of the study was to obtain an empirical model
for predicting HHV values based on the input data of the ultimate analysis and to compare
the R2 values with existing regression models.
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2. Materials and Methods
2.1. Crop Establishment and Data Collection

Voća et al. [17] stated that the planting of miscanthus was established in 2011 at the
Grassland Center (Medvednica). It was harvested in March 2020, at the beginning of
the next growing season. The testing of Miscanthus biomass samples was performed
in the laboratory of the Faculty of Agriculture in Zagreb. The samples were dried in a
laboratory dryer. After drying, the samples were ground in a laboratory mill. Each sample
was analyzed three times to ensure accurate analysis. The percentages of C, H, N, and S
were determined simultaneously using the dry combustion method CHNS analyzer. The
calorific value was determined using an oxygen bomb calorimeter, given in MJ/kg in dry
mass. Data from ultimate analysis and HHV data for miscanthus were collected from
the literature and are presented in Table S1. Data on N, C, S, H, and O were collected for
each sample, and the values were N (0.031–0.769%), C (49.45–53.42), S (0.055–1.28%), H
(5.21–6.27%), O (39.91–48.92%), and HHV (15.53–19.25 MJ/kg). According to literature
data, the value of HHV of miscanthus varies between 18.18–18.66 MJ/kg, N 0.28–0.39%, C
46.75–50%, S 0.13–0.19%, and H 5.76–6.09% [18], which shows that the presented data are
in range with the data from the literature.

2.2. Statistical Analysis

Statistical processing was performed using the software package TIBCO STATISTICA
13.3.0 (StatSoft TIBCO Software Inc., Palo Alto, CA, USA). The analyzed data are presented
as means with standard deviation. Analysis of variance (ANOVA) with Tukey’s HSD post
hoc test to compare sample means was used to examine variation in observed parameters.

To show the performance of the developed ANN model and predictive regression
models for calculating HHV with ultimate analysis inputs (N, C, S, H, and O), it is necessary
to calculate statistical parameters: reduced chi-square (x2) (Equation (1)), root mean square
error (RMSE) (Equation (2)), coefficient of determination (R2), mean bias error (MBE)
(Equation (3)), mean percentage error (MPE) (Equation (4)), and sum of squared estimate
of errors (SSE) (Equation (5)). The RMSE shows the efficiency of the model by comparing
the predicted values with the already measured values. The value obtained by the MBE is
used as an indicator of the standard deviation of the predicted values from the measured
values [19]. The listed parameters are given by the following formula [20].

x2 =

N
∑

i=1
(xpre,i − xexp,i)

2

N − n
(1)

RMSE =

[
1
N
·

N

∑
i=1

(xpre,i − xexp,i)
2

]1/2

(2)

MBE =
1
N

·
N

∑
i=1

(xpre,i − xexp,i) (3)

MPE =
100
N

·
N

∑
i=1

(∣∣xpre,i − xexp,i
∣∣

xexp,i

)
(4)

SSE =
N

∑
i=1

(xpre,i − xexp,i)
2 (5)

where xexp,i stands for the experimental values and xpre,i is the predicted values calculated
by the model, N and n are the number of observations and constants, respectively.



Mathematics 2022, 10, 3732 4 of 12

Yoon’s method of global sensitivity (Equation (6)) was used to calculate the direct
influence of the input parameters on the output variables, corresponding to the weighting
coefficients within the ANN model [21]:

RIij(%) =

n
∑

k=0
(wik · wkj)

m
∑

i=0

∣∣∣∣ n
∑

k=0
(wik·wkj)

∣∣∣∣ ·100% (6)

where w—denotes the weighting factor in the ANN model, i—input variable, j—output
variable, k—hidden neuron, n—number of hidden neurons, m—number of inputs.

2.3. ANN Modeling

ANN are among the most researched areas of neurocomputing. A multilayer percep-
tron (MLP) is a neural network with hidden layers Figure 1. ANN can adapt its internal
structure depending on the input data and the final goal of the function. The basic char-
acteristics of ANN are the ability to learn independently, the ability to adapt the system
to the available information and data processing, and to perform complex mathematical
operations at high speed. The number of neurons and hidden layers in ANN can vary
and is determined by the trial-and-error method [11]. Neural networks are categorized
by their architecture, topology, and learning mode [22]. Neural networks take inputs,
compute them, and convert them into outputs. This process is called the learning process
of the network. The learning process of ANN can be supervised and unsupervised. In
supervised learning mode, the model has access to output data for computations, while in
unsupervised mode, there is no output data [23].

Figure 1. Structure of 5-11-1 ANN.

Models of ANN can provide a link between input and output data without using a
complicated type of computational method. MLP ANN is recognized as the most effective
type of ANN [9,24]. ANN is a mathematical structure developed from the motivation of the
learning process in the human brain. ANN is a promising modeling technique for datasets
with nonlinear relationships. Multilayer feedforward networks (MLP-ANN) consist of
interdependent units (neurons). These neurons are arranged in the form of layers (input,
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hidden, and output layers). The number of neurons and hidden layers varies and can be
determined by the method of trial and error so that the model error is minimal [11].

The data used for ANN were collected from the literature and were randomly divided
into sets for training (70%), testing (15%) and validation (15%). ANN model was trained
100,000 times with a random number of hidden layers (1–20), and duration of creating the
model was 27 min. The model was created on a computer with an Intel i5 processor (12th
Gen Intel(R) Core(TM), i5-12400F, 2.50 GHz) and 8 GB of RAM.

Different transfer functions and random values for weighting coefficients and bias
were used. Training of the network data was set up during the ANN learning cycle to
determine the number of neurons and adjust the weight coefficients in each neuron [25].
The biases and weight coefficients related to the hidden and the output layers of the model
are represented in the matrices and vectors W1 and B1 and W2 and B2, respectively [26].
The neural network model can be represented in matrix notation: Equation for calculating
the output data (Equation (7)) of the neural network [27]:

Y = f1(W2 · f2(W1·X + B1) + B2) (7)

where Y represents the output value, f 1 and f 2 represent the transfer function in the hidden
and output layer, X represents the matrix of the input layer [28].

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was used for the calcula-
tions. The BFGS algorithm is one of the most effective algorithms for optimization and can
be successfully used for the optimization of multivariate problems [29].

2.4. Regression Models

Table 1 presents the models of the proposed equations for the calculation of HHV
biomass found in the literature [5,30,31]. The models are based on establishing relations
between variables based on ultimate analysis and HHV output values.

Table 1. List of equations for calculating HHV.

Sr.no. Proposed Equations from the Literature References

1 HHV = a + b · C [31]
2 HHV − a + b · H [31]
3 HHV − a + b · O [31]
4 HHV = a + b · O

C [31]
5 HHV = a + b · H

C [31]
6 HHV = a + b · C + c · H + d · C2 + e · H2 [31]
7 HHV = a + b · O

C + c · H
C + d ·

(
O
C

)2
+ e ·

(
H
C

)2 [31]

8 HHV = a · C − b [5]
9 HHV = a + b · C2 + c · C + d · H + e · C · H + g · N [30]
10 HHV = a + b · (C)2 [31]

3. Results

Table 2 shows the mean values of the variables of the ultimate analysis and HHV with
standard deviation and Tukey’s HSD test of miscanthus.

Table 2 shows the differences in the percentages of nitrogen, carbon, hydrogen, sulfur,
and oxygen and is expressed as mean and standard deviation. The prefabricated statistical
analysis shows that the observed values between the samples are not statistically significant
(statistically significant at p ≤ 0.05). Higher content of C and H components leads to a
higher total value of HHV [32]. The sample MxG 6 has the highest average content of N
(0.31%) and H (5.89%) and a higher value of HHV (18.45 MJ/kg). The sample MxG 14 has
the lowest average percentage value of elements S (0.09%) and H (5.31%) and the lowest
value of HHV (17.83 MJ/kg). The average values in the paper are: 0.22% N, 51.42% C,
0.13% S, 5.80% H, 42.42% O and 18.18 MJ/kg for HHV.
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Table 2. Average values of nitrogen, carbon, sulfur, hydrogen, and oxygen of investigated biomass
of miscanthus.

Sample N C S H O HHV

MxG1 0.24 ± 0.15 a 51.49 ± 0.58 a 0.11 ± 0.04 a 5.82 ± 0.32 a 42.33 ± 0.74 a 18.21 ± 0.54 a

MxG2 0.19 ± 0.13 a 51.3 ± 0.53 a 0.14 ± 0.06 a 5.85 ± 0.2 a 42.53 ± 0.42 a 18.16 ± 0.37 a

MxG3 0.23 ± 0.15 a 50.9 ± 0.96 a 0.14 ± 0.06 a 5.82 ± 0.2 a 42.91 ± 0.89 a 18.22 ± 0.58 a

MxG4 0.22 ± 0.13 a 51.75 ± 0.73 a 0.21 ± 0.3 a 5.83 ± 0.33 a 41.99 ± 0.69 a 18.24 ± 0.64 a

MxG5 0.2 ± 0.09 a 51.38 ± 0.8 a 0.14 ± 0.08 a 5.84 ± 0.33 a 42.44 ± 0.82 a 18.37 ± 0.48 a

MxG6 0.31 ± 0.21 a 51.53 ± 0.86 a 0.21 ± 0.2 a 5.89 ± 0.23 a 42.06 ± 0.88 a 18.45 ± 0.61 a

MxG7 0.2 ± 0.13 a 51.33 ± 0.93 a 0.12 ± 0.09 a 5.82 ± 0.33 a 42.54 ± 0.92 a 17.97 ± 0.73 a

MxG8 0.2 ± 0.11 a 51.65 ± 1.33 a 0.11 ± 0.06 a 5.88 ± 0.27 a 42.16 ± 1.18 a 18.23 ± 0.64 a

MxG9 0.21 ± 0.12 a 51.76 ± 0.77 a 0.13 ± 0.05 a 5.85 ± 0.35 a 42.05 ± 0.86 a 18.35 ± 0.32 a

MxG10 0.18 ± 0.1 a 51.48 ± 0.97 a 0.11 ± 0.05 a 5.83 ± 0.33 a 42.4 ± 0.85 a 18.1 ± 0.61 a

MxG11 0.22 ± 0.16 a 51.09 ± 1.14 a 0.11 ± 0.05 a 5.85 ± 0.27 a 42.74 ± 1.12 a 18.06 ± 0.33 a

MxG12 0.19 ± 0.11 a 51.6 ± 0.82 a 0.12 ± 0.06 a 5.86 ± 0.35 a 42.24 ± 0.97 a 18.51 ± 0.5 a

MxG13 0.27 ± 0.22 a 51.15 ± 0.8 a 0.15 ± 0.09 a 5.79 ± 0.36 a 42.64 ± 0.86 a 18.24 ± 0.6 a

MxG14 0.2 ± 0.14 a 51.53 ± 0.82 a 0.09 ± 0.03 a 5.31 ± 1.71 a 42.86 ± 2.12 a 17.83 ± 0.81 a

MxG15 0.25 ± 0.15 a 51.73 ± 0.99 a 0.12 ± 0.05 a 5.83 ± 0.38 a 42.08 ± 1.19 a 18.09 ± 0.4 a

MxG16 0.18 ± 0.12 a 51.11 ± 1.12 a 0.11 ± 0.05 a 5.83 ± 0.33 a 42.77 ± 1.15 a 18.02 ± 0.43 a

N—Nitrogen (%); C—Carbon (%); S—Sulfur (%); H—Hydrogen (%); O—Oxygen (%). The means in the same row
(various samples), with different lowercase superscripts, are statistically different (p ≤ 0.05), according to Tukey’s
HSD test.

The correlation analysis of the parameters of ultimate analysis and HHV was per-
formed via Rstudio and related packages (corrplot).

The diagram of the correlation matrix shows the correlation coefficients between the
variables. Positive values of the correlation coefficient are shown in blue, while negative
values are shown in red. The intensity of the color in the circle is proportional to the
correlation coefficient. In Figure 2, it can be observed that the elements O, S, and N are
positively correlated with the value of HHV, while C and H are negative. It can be seen
that variable S has the highest positive correlation coefficient, i.e., a significant influence on
HHV, while variables N and O also have positively correlated values, but less influence on
HHV. The variable H in the correlation graph shown has a negative correlation value on
HHV. Based on Figure 2, HHV is best correlated with the concentrations of H, S, and N
(when the blue color is shown, it is a positive correlation).

Figure 2. Correlation plot of observed values.
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After determining the mean of all parameters, the correlations of the variables and
their contribution were determined. The influence of the variables (N, C, S, H, O, and HHV)
and the samples are combined graphically.

Principal Component Analysis (PCA) is used in the search for orthogonal directions
of greatest dispersion of given data with the task of finding patterns in the distribution
of individual data with respect to the original data defined in a space with multiple
dimensions [33]. The analysis is also used to build predictive models, and it is easy to
interpret the impact of individual variables on a given value. In Figure 3, the right side
of the diagram shows sample 6, which is significant and has the highest values for HHV,
H, N, and S. The upper part of the diagram shows samples 9, 8, 12, 15, 4 with the highest
content of C. On the left side of the diagram are samples 14, 16, 11, 3, which have the
highest content of O. According to the PCA analysis, the parameters N, S, H and HHV
have the greatest influence on the data.

Figure 3. PCA of observed values.

4. Discussion
4.1. Prediction of HHV Using Developed Regression Models

Table 3 shows the calculated statistical test of “goodness of fit” for the proposed
models to calculate the HHV value based on ultimate analysis.

Table 3. Statistical test goodness of fit (developed regression models).

Model x2 RMSE MBE MPE SSE R2 Skewness Kurtosis SD Variance

Model 1 0.31 0.01 0.01 854.24 59.66 0.00 −0.63 1.47 0.56 0.31
Model 2 0.19 0.01 0.01 578.45 35.56 0.40 −1.32 9.26 0.43 0.19
Model 3 0.30 0.01 0.01 810.35 57.95 0.03 −0.67 2.10 0.55 0.30
Model 4 0.31 0.01 0.01 830.08 58.92 0.02 −0.65 1.81 0.56 0.31
Model 5 0.19 0.01 0.01 623.98 36.77 0.38 −1.19 6.78 0.44 0.19
Model 6 0.22 0.01 0.01 582.07 42.91 0.36 −1.53 12.54 0.47 0.22
Model 7 0.19 0.01 0.01 585.55 35.77 0.40 −1.28 8.67 0.43 0.19
Model 8 0.31 0.01 0.01 854.24 59.66 0.00 −0.63 1.47 0.56 0.31
Model 9 0.17 0.01 0.01 526.96 31.57 0.47 −1.79 13.09 0.41 0.17

Model 10 0.31 0.01 0.01 853.32 59.64 0.00 −0.63 1.49 0.56 0.31
ANN 0.07 0.27 -0.03 1.10 13.74 0.77 0.53 2.29 0.27 0.07

x2—reduced chi-square, RMSE—root mean square error, R2—coefficient of determination, MBE—mean bias error
and MPE—mean percentage error, ANN—artificial neural network.
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The regression models offered from the literature use a different number of input
variables of the ultimate analysis. Models 1,2,3,8,10 use one, while models 4,5,6 use two
input variables. The highest number of input data is used by regression models 7 and 9,
where the number of input variables is three. In contrast to the equations offered to calculate
the HHV, ANN uses all five input variables of the ultimate analysis and shows the highest
accuracy in prediction. The presented models in the calculations did not show sufficient
accuracy and precision to be used as a reliable method for predicting HHV biomass of
miscanthus. The coefficient of determination (R2) was used as the most important statistical
parameter to evaluate the suitability of the mathematical models, which was lowest for
model 1, 8 and model 10 (R2 = 0.00) and highest for model 9 (R2 = 0.47) in the calculations
for 10 different models. The reliability of the regression models and ANN is ensured
by the parameters MPE, SSE and R2, but other parameters (for most models) also show
good performance. The calculated statistical parameter x2 shows good performance in
models 2,5,7 (0.19) and in model 9 (0.17). For the above-mentioned reason, it is necessary to
consider several statistical parameters when evaluating performance of the model.

4.2. ANN Model

In developing the model ANN, the input variables (N, C, S, H, and O) and the output
value (HHV) had to be determined. The weights and biases were determined randomly by
looking for values that would make the model accurate enough to predict the output.

The ANN model developed for the prediction of HHV showed a good ability to
generalize data and predict. The model showed the best performance with 11 neurons in
the hidden layer within the network, where a high R2 value (0.77 overall) and an overall
low sum of squares value (SOS) were achieved during the training cycle (Table 4).

Table 4. Weights and biases of input and output layer.

Input Layer Output Layer

Weight Bias Weight Bias

N C S H O HHV

−1.74 10.34 −30.08 −7.41 1.90 1.62 −1.76 2.06
−0.28 3.37 1.69 2.99 −4.61 −0.37 1.18
2.58 −0.83 −5.02 −0.40 −0.37 −1.56 0.20
4.23 −0.73 −6.78 −0.79 0.10 −1.40 −0.31
10.55 −3.52 −15.48 12.93 −0.96 −2.58 −1.91
1.08 1.54 1.49 −2.03 −3.48 −1.57 −0.44
3.56 −2.75 −8.74 1.54 1.03 −2.09 −1.30
−3.67 1.30 2.92 2.02 −2.74 −0.87 0.48
−2.72 −0.49 6.47 −0.49 0.34 0.75 −0.60
2.25 2.01 6.90 −5.15 1.20 3.20 0.47
−1.14 1.93 2.53 0.98 −1.49 0.71 −1.56

MLP-ANN (Multi-layer perceptron Artificial neural network) is one of the forms of
ANN that are mostly used in applications for solving nonlinear equations [34]. Table 4
shows the weight coefficients and biases of the developed MLP-ANN network model. It
can be seen that the best results were obtained with a hidden layer with a number of 11
hidden neurons, where the experimental values of HHV best match the values of HHV
calculated with the ANN model.

Table 5 shows the training, test and validation performance of the model ANN,
expressed by the coefficient of correlation and by the training (0.042), test (0.026), and
validation (0.021) error of the model. Table 3 shows the results of the statistical test
indicating the deviations between the observed values and the expected values. The values
shown indicate the ability of the algorithm to predict according to the given model data.
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Table 5. Summary of ANN.

Net. Name Train.
Perf.

Test
Perf.

Valid.
Perf.

Train.
Error

Test
Error

Valid.
Error

Train.
Algorithm

Error
Function

Hidden
Activation

Output
Activation

MLP 5-11-1 0.861 0.902 0.951 0.042 0.026 0.021 BFGS 71 SOS Tanh Logistic

Train.—Training; Perf.—Performance; Valid.—Validation.

Therefore, the ANN structural model MLP 5-11-1 proved to be sufficiently accurate to
predict HHV based on the N, C, S, H, and O contents. The training (0.861), test (0.902) and
validation (0.951) performance values shows that the model is able to predict values almost
equal to the measured values.

Scatterplot is one of the most common visualization techniques, and displays and
displays the behavior of the entered data [35,36]. Figure 4. shows the data of the predicted
HHV versus the target HHV, which largely shows the overlap.

Figure 4. Predicted HHV vs. target HHV.

The calculated parameters comprising the statistical test “goodness of fit” are shown
in Table 3. The reported values of x2 (0.07), RMSE (0.27), MBE (−0.03), MPE (1.10), SSE
(13.74), and R2 (0.77). The residual analysis also yielded the parameters skewness (0.534),
kurtosis (2.293), standard deviation (0.269), and variance (0.072). Conducted analysis shows
that the model has good predictive accuracy.

The range in which the relevance factor is determined is between −1 and +1. The
increase of HHV is mainly influenced by the increase of the parameter S. The influence
of input variables was studied according to Yoon’s interpretation method for parameters
N, C, S, H, O. In Figure 5 is the influence of variables N (−20.64%), C (3.13%), S (68.89%),
H (−3.07%), and O (−4.27%) on the target value of HHV. In Figure 5, it can be seen that
the parameters C and S have positive values of relative importance for the variable HHV,
while the values of N, H, and O have a negative influence and are not factors of relative
importance in determining the value of HHV. Looking at the calculation of the input data
carried out according to Yoon’s method of interpretation based on the ultimate analysis the
positive variable S have the greatest influence on the determination of the output values
of HHV.

The predictive regression models offered in the literature are used as nonlinear models
to predict HHV biomass of miscanthus. As shown in the paper, the use of the predictive
models does not provide suitability and sufficient accuracy in determining the HHV
miscanthus with respect to the input parameters. Using ANN as a nonlinear model to
determine the HHV value provides a more convenient way of prediction and provides more
accurate weighting coefficients and biases, which are the basis for establishing relations
between input parameters and output data.
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Figure 5. Relative importance of variables on HHV.

5. Conclusions

The use of ANN models to predict the energy properties of biomass has been increas-
ingly explored recently. The main point of the study is the creation of an improved model
(in the form of ANN) compared to existing literature regression models, as evidenced
by a higher R2 value. The calculations performed according to the proposed non-linear
mathematical models are not suitable enough to predict the HHV biomass of miscanthus
(R2 ≤ 0.47). Incorporating available data from the ultimate analysis of miscanthus the
developed neural network model showed high accuracy in predicting the higher heating
value (overall R2 = 0.77). The factors N, C, S, H, and O influence the value of HHV. In
the developed model, the increase in HHV is mainly influenced by the increase in the
values of the parameter S. Although these models are not yet widely used as mathematical
models for prediction (especially for variables that have nonlinear relationships), they offer
the possibility of obtaining the desired result with less time, lower cost, and satisfactory
accuracy, which can replace existing empirical methods. The developed model will be able
to make more accurate predictions as more input data is collected. Future plans are to
expand the database (literature sources and experimental data) and the development of
new models such as Random Forest Regression and Support Vector Machine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10203732/s1, Table S1. Result of ultimate analysis and HHV
of miscanthus biomass.
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Abstract: Agricultural biomass is one of the most important renewable energy sources. As a byprod-
uct of corn, soybean and sunflower production, large amounts of biomass are produced that can be
used as an energy source through conversion. In order to assess the quality and the possibility of
the use of biomass, its composition and calorific value must be determined. The use of nonlinear
models allows for an easier estimation of the energy properties of biomass concerning certain input
and output parameters. In this paper, RFR (Random Forest Regression) and SVM (Support Vector
Machine) models were developed to determine their capabilities in estimating the HHV (higher
heating value) of biomass based on input parameters of ultimate analysis. The developed models
showed good performance in terms of HHV estimation, confirmed by the coefficient of determination
for the RFR (R2 = 0.79) and SVM (R2 = 0.93) models. The developed models have shown promising
results in accurately predicting the HHV of biomass from various sources. The use of these algorithms
for biomass energy prediction has the potential for further development.

Keywords: agricultural biomass; higher heating value; machine learning; estimation; energy potential

1. Introduction

With increasing population growth and negative climate change trends, there is a
need to create sustainable systems of energy production and bioeconomy [1]. The use of
green technologies, i.e., biofuels, is among the most effective ways for reducing greenhouse
gasses that directly affect global warming. Biomass is a renewable energy source and has
high potential in energy production [2]. Large amounts of lignocellulosic biomass in the
world allow its utilization and conversion into an alternative fuel source [3]. Calorific value
is the most important parameter in assessing the possibility of using biomass as a fuel [4].
Higher heating value (HHV) is an important factor in describing the quality of fuel and the
possibility of using biomass for energy conversion. The use of biomass as an alternative fuel
source is considered environmentally and economically viable and offers the possibility
of replacing current fossil fuels. One of the fundamental characteristics of biomass is its
chemical composition, i.e., the ultimate analysis, which includes a percentage of carbon
(C), hydrogen (H), nitrogen (N), sulfur (S) and oxygen (O) [5]. Large amounts of biomass
are produced as a by-product in agricultural production and most of it is unused. Biomass
from agricultural products such as corn residues, straw and sunflower stalks represents an
easily available energy source [6]. The authors also state that corn cobs are an economically
viable and environmentally accessible source of biomass that can be used for agricultural
energy production. Soybean is a legume that has economic value in terms of seed, straw
and biomass yield. In the study by Krisnawati and Adie [7], the soybean was mentioned
for its great prospect as a biomass energy source and is especially recognized as a biomass
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source for fuel production due to its favorable energy properties [8]. The sunflower is an
extremely important feedstock grown on a large area that can produce a significant amount
of biomass per hectare [9]. The authors also note that biomass from sunflower cultivation
is a suitable feedstock for the production of second-generation biofuels.

In order to assess the possibility of using biomass as a fuel, its composition must be
determined by various laboratory analyses. The elements of organic matter in biomass are
carbon (C), hydrogen (H), oxygen (O), nitrogen (N) and sulfur (S) which can be measured
by the ultimate analysis [10,11]. Higher heating value (HHV) is a specific characteristic of
biomass that can be used to evaluate the possibility of using biomass for energy through
conversion (in the form of heat, fuel, etc.) [12]. In the study of Roman et al. [13], the
investigation aimed to evaluate the mechanical and energetic properties of shredded pine
forest residues during the briquetting process. The shredded fragments of the forest
residues were compacted by the principal stresses with a determination of the energy value
consumed during the briquetting process.

In the conducted research by Ibikunle et al. [14], a model was developed to predict
the HHV of municipal waste using the input data of the ultimate analysis. The models
used to estimate HHV were either in linear or quadratic form. The best-fitting model in the
study showed good performance in terms of prediction and the coefficient of determination
(R2 = 0.97) was used as the main evaluation parameter. SVM models for estimating HHV
are applicable to different types of biomass, thus providing a good solution to the problem
of estimating HHV [15]. A machine learning (ML) model created to estimate HHV of
biomass was based on the input parameters of proximate analysis data (percentage of fixed
carbon, ash and volatile matter). An extreme learning machine (ELM) method proved to be
very practical in estimating the HHV, as evidenced by the high coefficient of determination
for the input parameters of fixed carbon (0.972), volatiles (0.989) and ash (0.968) [12].
Bychkov et al. [16] investigated developed models for predicting the HHV of plant biomass
from ultimate analysis data. In the conducted study, authors used 150 models of which
8 were selected for model testing, with 3 showing good performance in estimating the HHV
of biomass with small deviations from actual values.

The aim of this paper is to determine the possibility of the mathematical modelling
of HHV for corn, soybean and sunflower biomass using machine learning techniques,
such as the support vector machine (SVM) and random forest regression (RFR) models for
regression, where all data are divided into two parts, such that one part is for training and
one part for testing the model in a ratio of 70–30(%). The statistical test “goodness of fit” is
used as the main evaluation method for the model performance. A comparison of the SVM
and RFR models will show which model is better for predicting HHV biomass based on
the input parameters of the ultimate analysis.

2. Materials and Methods
2.1. Data Collection

The data for creating the SVM and RFR models were obtained from the literature [17–28].
The data of the ultimate analysis and HHV for 51 biomass samples, including 27 samples
for corn, 15 for soybean and 19 for sunflower biomass, including the biomass and biomass
products, were collected for model development.

2.2. Nonlinear Modelling

After the collection dataset, the data were divided into a part for training and a part for
testing the model, in the ratio of 70% and 30%, for SVM and RFR models. Statistical analysis
was performed using TIBCO STATISTICA 13.3.0 software (StatSoft TIBCO Software Inc.,
Palo Alto, CA, USA). The analyzed data were presented in the form of mean and standard
deviation. Analysis of variance (ANOVA) and Tukey’s HSD (honestly significant difference)
test were used to compare the samples to show the variability of the observed data.

SVM, as a supervised learning model, is based on statistical theories and can be used
for clustering and regression [15]. The SVM model created is based on the input data
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from the ultimate analysis, as type 1 regression models with Kelner type (Radial Basis
Function—RDF) and 9 support vectors. The total number of iterations of the SVM model
is 10,000.

As nonlinear models, RFRs are suitable for predictions with medium and large data
sets [28]. The RFR models were also based on the input data from the final analysis with
the data split into 70% for training and 30% for testing the model. The models were built
using 10,000 random trees. For each internal node within the decision trees, entropy is
calculated using the formula (Equation (1)) [29]:

E = −
c

∑
i=1

pi × log(pi) (1)

where c represents the number of unique classes and pi prior probability of each given class.
In order to solve the nonlinear problem, the Kelner function is used to map the input vectors
into a multidimensional vector proctor that is used to find the hyperplane [30]. The equation
used to create the SVM model is shown in the following equation (Equation (2)) [31]:

γ = ωTθ(χ) + b (2)

where γ is target value, w is the weight vector, b is the threshold, θ is the nonlinear function
of the model and χ is input vector.

2.3. Models Verification

To show the performance of the developed SVM and RFR models with respect to
the input variables of the ultimate analysis, the following statistical parameters must be
calculated: x2 (reduced chi-square) from Equation (3), RMSE (root mean square error) from
Equation (4), MBE (mean bias error) from Equation (5), MPE (mean percentage error) from
Equation (6), and SSE (sum of squared estimate error) from Equation (7). “Goodness of fit”
is calculated using the above statistical parameters to find the model with the lowest error,
and they are represented by the following equations [32]:

x2 =

N
∑

i=1
(xpre,i − xexp,i)

2

N − n
(3)

RMSE =

[
1
N

·
N

∑
i=1

(xpre,i − xexp,i)
2

]1/2

(4)

MBE =
1
N

·
N

∑
i=1

(xpre,i − xexp,i) (5)

MPE =
100
N

·
N

∑
i=1

(∣∣xpre,i − xexp,i
∣∣

xexp,i

)
(6)

SSE =
N

∑
i=1

(xpre,i − xexp,i)
2 (7)

3. Results

Table 1 shows the average values of the ultimate analysis and the HHV of the observed
biomass.

Table 1 shows the mean and standard deviation of the variables of the ultimate analysis
of corn, soybean and sunflower biomass. Sunflower biomass has the highest value for
C (average 54.16%), H (average 6.51%), N (2.22%) and HHV (average 22.46 MJ/kg), and
the lowest value for S (average 0.06%) and O (35.62%). Higher proportions of C and H
influenced the increase in the HHV value [33]. Soybean biomass has the lowest average
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value of C (47.37%), H (4.53%) and HHV (17.93 MJ/kg), while it has the highest average
value of S (0.22%). The corn biomass sample has an average value of C (45.45%), H (5.29%),
N (0.70%), S (0.08%), O (38.11%) and HHV (19.42 MJ/kg). All observed samples showed a
significant difference. Thus, the variables C and S are statistically significant at a significance
level of α = 0.05, while the observed variables H, N, O and HHV are statistically significant
at a significance level of α = 0.01.

Table 1. Ultimate analysis of corn, soybean and sunflower biomass.

Sample C (%) H (%) N (%) S (%) O (%) HHV (MJ/kg)

Corn biomass 48.45 ± 7.3 a 5.29 ± 1.11 b 0.70 ± 0.50 a 0.08 ± 0.09 a 38.11 ± 11.22 a 19.42 ± 2.72 a

Soybean biomass 47.37 ± 3.48 a 4.53 ± 0.73 a 1.38 ± 2.32 b 0.22 ± 0.3 b 46.5 ± 6.83 b 17.93 ± 1.04 a

Sunflower biomass 54.16 ± 8.9 b 6.51 ± 0.9 c 2.22 ± 1.64 c 0.06 ± 0.13 a 35.62 ± 9.25 a 22.46 ± 4.41 b

Significance ** * * ** * *

Minimum 47.37 4.53 0.70 0.06 35.62 17.93
Maximum 54.16 6.51 2.22 0.22 46.50 22.46
Average 49.99 5.44 1.44 0.12 40.08 19.94

C—concentration of carbon; H—concentration of hydrogen; N—concentration of nitrogen; S—concentration
of sulfur; O—concentration of oxygen; HHV—higher heating value. The means in the same column (various
samples) with different lowercase superscripts are statistically different (p < 0.05), according to Tukey’s HSD test.
Statistical significance; * p ≤ 0.01; ** p ≤ 0.05.

Figure 1 shows the correlation diagram of the observed variables of the ultimate
analysis and HHV of the average values of corn, soybean and sunflower biomass. The
correlation of the observed values is shown in the range −1 to 1, which corresponds to the
color intensity. Variables C (r = 0.98), H (r = 0.99) and N (r = 0.70) are positively correlated
with the HHV value, while variables S (r = −0.83) and O (r = −0.88) are negatively correlated
with the HHV value.

Energies 2023, 16, 690 5 of 10 
 

 

 

Figure 1. Correlation plot of observed variables of ultimate analysis and HHV. 

Figure 2 shows the PCA of the observed biomass samples in relation to the variables 

of the ultimate analysis and the HHV. The PCA method is used to simplify a complex 

array of data into more understandable groups for presentation by grouping all data with 

minimal losses into meaningful units [34,35]. The sunflower biomass group has the high-

est value for H, C, N and HHV, while the soybean biomass group has the lowest value for 

C, H and HHV. The observed corn biomass group has the lowest value for the variable N. 

 

Figure 2. Principal component analysis (PCA) of observed corn, soybean and sunflower biomass. 

Figure 1. Correlation plot of observed variables of ultimate analysis and HHV.

Figure 2 shows the PCA of the observed biomass samples in relation to the variables of
the ultimate analysis and the HHV. The PCA method is used to simplify a complex array of
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data into more understandable groups for presentation by grouping all data with minimal
losses into meaningful units [34,35]. The sunflower biomass group has the highest value
for H, C, N and HHV, while the soybean biomass group has the lowest value for C, H and
HHV. The observed corn biomass group has the lowest value for the variable N.
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4. Discussion
4.1. Support Vector Machine (SVM)

SVM models can be used for prediction in the form of regression due to their ability
to generalize to different sample sizes and the possibility of nonlinear modeling [36]. The
standard form of SVM belongs to the supervised form of learning and offers numerous
advantages in terms of optimization and solution finding in nonlinear modeling [30].
Table 2 shows the values of the vector, weighting coefficients and decision constant with
respect to the input variables in the SVM model.

Table 2. Vector values of the developed SVM model.

Vector No. Weights
Support Vector Decision

ConstantC H N S O

1 9.00 0.22 0.63 0.07 0.07 0.73 −0.09
2 −7.34 0.20 0.68 0.07 0.12 0.70
3 −0.21 0.95 0.00 0.21 0.02 0.00
4 −1.01 0.35 0.49 0.00 0.32 0.96
5 0.34 0.25 0.71 0.11 0.47 0.83
6 −9.00 0.28 0.67 0.17 0.09 0.72
7 6.14 0.51 0.70 0.16 0.00 0.64
8 −1.95 0.77 0.96 0.57 0.00 0.36
9 4.02 1.00 0.97 0.59 0.00 0.20

Table 2 presents vector values of the developed SVM model.
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4.2. Random Forest Regression (RFR)

Random Forest Regression (RFR) can easily adapt to nonlinear relationships between
data and shows better predictive ability than linear regression models. RFRs are considered
a reliable tool for predicting performance [29,37].

Figure 3 shows the importance of the predictor in the value 0 to 1 on the output value
of HHV in the RFR model. In modeling, the highest predictor value is for O (1.00), followed
by C (0.99), N (0.95), S (0.78) and H (0.57). With regard to the presented Figure 3, it can be
concluded that the input parameters O, C and N have the greatest influence on the output
value of HHV.
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4.3. Goodness of Fit

Table 3 shows the statistical analysis, “goodness of fit”, which presents the ability of
the developed models to predict the HHV values.

Table 3. “Goodness of fit” for developed SVM and RFR models.

Residual Analysis

Model x2 RMSE MBE MPE SSE AARD R2 Skewness Kurtosis SD Variance

SVM model 0.82 0.90 −0.03 3.07 49.28 44.12 0.93 −3.04 14.32 0.91 0.82
RFR model 5.99 2.43 −0.01 8.32 359.53 103.30 0.79 0.94 2.08 2.45 5.99

Table 3 shows the statistical test, “Goodness of fit”, which shows the performance
of the developed SVM and RFR models. The calculated values of x2 (0.82), RMSE (0.90),
MBE (−0.03), SSE (49.28), AARD (44.12) and R2 (0.93), and the residual analysis skewness
(−3.04), kurtosis (14.32), SD (0.91) and Var (0.82) show the low level of error of the SVM
model. The values of x2 (5.99), RMSE (2.43), MBE (−0.01), MPE (8.32), SSE (359.53), AARD
(103.30), and R2 (0.79) were calculated for the RFR model in the table. The skewness
(0.94), kurtosis (2.08), SD (2.45) and variance (5.99) parameters were determined by the
residual analysis. Both developed models showed satisfactory performance in modeling
the HHV values. Considering that, R2 is used as the main indicator of the model’s ability
for estimation.

The scatterplot visualization technique was used to analyze correlations of variables on
the x and y axes and to detect associations and anomalies in a multidimensional dataset [38].
Figure 4 shows the parity plot of the predicted and targeted HHV of the developed SVM
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and RFR models for training and test data. Both models show an extensive overlap of the
data, with a coefficient of determination of R2 = 0.79 for the RFR model, while the overlap
values in the SVM model have a higher coefficient of determination (R2 = 0.93). In the
study conducted by Xing et al. [38], machine learning models were built to estimate the
HHV value of biomass based on the input parameters of ultimate and proximate analysis.
The RFR model in the study shows a great fit for prediction (R2 > 0.94), while the SVM
model also shows good performance (R2~0.90). The RFR models give good results in terms
of performance. The parameters R2, MAPE and RMSE are calculated at 0.94, 0.57 and
2.56, respectively, while for the SVM model the parameters R2, MAPE and RMSE are 0.90,
0.76 and 3.53, respectively. The study also showed the relative importance of the input
parameters of ultimate analysis in the models for C (61.6%), H (20%), O (9.6%) and N
(8.8%). Considering everything, it can be concluded that the developed models are suitable
for estimating the HHV based on the input parameters of the ultimate analysis. Using
the performed statistical test “Goodness of Fit”, the parameters showed a low level of
error in estimating the HHV, while the SVM model shows a higher level of performance in
modeling.
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The developed SVM and RFR models show good ability in estimating the HHV of
corn, soybean and sunflower biomass. In developing the model, the input parameters of
the ultimate analysis (percent concentration of C, H, N, S and O) were used to estimate
HHV. In the case of the RFR model, the output value is most influenced by the variables
in the following order: O (1.00), C (0.99), N (0.94), S (0.78) and H (0.57). The SVM model
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with a number of five independent input parameters, as a regression model, shows the
best performance with nine support vectors using RDF (Radial Basis Function) as a Kelner
type. Data from 51 different biomass samples were used for the study (27 for corn biomass,
15 for soybean biomass and 19 for sunflower biomass). The SVM model showed better
performance than the RFR model because the mentioned model generalizes and covers the
data better for a small and medium data set, while the RFR model shows better estimation
performance for a medium and large data set [39,40].

5. Conclusions

Agricultural biomass generated from corn, sunflower and soybean production has
a great potential as a feedstock for energy production. Large amounts of biomass are
produced as a byproduct during agricultural production and are often unused. In order to
assess the possibility of using biomass as a fuel, its energy properties and composition must
be determined. Nonlinear models offer the possibility to estimate the HHV of biomass with
high accuracy. The developed nonlinear models in the form of Random Forest Regression
(RFR) and Support Vector Machine (SVM) were determined as successful tools in estimating
biomass HHV. Thus, this work shows the satisfactory ability of the SVM (R2 = 0.93) and
RFR models (R2 = 0.79) in estimating HHV based on the input parameters of the ultimate
analysis of observed agricultural biomass.
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Abstract: The aim of this study was to investigate the potential of using structural analysis param-
eters for estimating the higher heating value (HHV) of biomass by obtaining information on the
composition of cellulose, lignin, and hemicellulose. To achieve this goal, several nonlinear mathe-
matical models were developed, including polynomials, support vector machines (SVMs), random
forest regression (RFR) and artificial neural networks (ANN) for predicting HHV. The performed
statistical analysis “goodness of fit” showed that the ANN model has the best performance in terms
of coefficient of determination (R2 = 0.90) and the lowest level of model error for the parameters X2

(0.25), RMSE (0.50), and MPE (2.22). Thus, the ANN model was identified as the most appropriate
model for determining the HHV of different biomasses based on the specified input parameters. In
conclusion, the results of this study demonstrate the potential of using structural analysis parameters
as input for HHV modeling, which is a promising approach for the field of biomass energy production.
The development of the model ANN and the comparative analysis of the different models provide
important insights for future research in this field.

Keywords: structural analysis; support vector machine; artificial neural network; random forest
regression; high order polynomials

MSC: 49M37

1. Introduction

With the increasing use of renewable energy sources to meet the growing demand for
energy, biomass will play a central role in the coming years. This is particularly important
given the rising cost of conventional fuels and the need to mitigate the exacerbation of
climate change. [1]. Biomass, which refers to biodegradable residues from agricultural
production, various types of organic waste, residues of biological origin from agriculture
and forestry, and biological residues from plant and animal production [2], is one of the
most common renewable sources for energy production [3]. Research has shown that the
use of energy crops for energy production can replace existing conventional fuels and slow
down negative climate change [4]. Lignocellulosic biomass is widely recognized as an
effective and efficient renewable resource for energy production [5]. In recent times, the
use of renewable energy resources has become a critical component of energy security.
A crucial factor in determining fuel quality and conducting tests is the higher heating
value (HHV), but its determination requires a long time and the use of special laboratory
equipment. For this reason, various mathematical models are developed to predict the
HHV value depending on the input parameters of different analyses [6]. In addition to
mathematical models, numerous machine learning techniques (ML) facilitate the creation
of more efficient forecasting models. Recently, artificial neural networks (ANNs) have been
increasingly used in the field of modeling and represent a suitable tool for the investigation
and evaluation of biomass energy parameters [7]. The basic features of an ANN are its
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structure, “learning” algorithm, and activation function used to transfer the computed
values from one neuron to another. By selecting the input parameters, the models in
the form of ANNs can fit and generalize the data according to the desired output value.
The effectiveness of ANN is determined by comparing experimental and computed data.
There are several models of ANN, but in application, especially for regression, the most
efficient models are multilayer perceptrons (MLP-ANN) [8–10]. RFR models, in addition to
anticipating, allow the size of the interval to be determined by estimation (instead of using
a separate dataset required for calibration). They also provide reliability and a much higher
level of effectiveness for prediction than existing linear methods [11]. RFR is used as a useful
tool for predicting desired output values. When using the RFR model, it is important to
determine intervals that contain values with a certain prediction probability. Similar to other
approaches to forecasting, these models are typically used for finding “points” that are not
accompanied by actual value deviation data [12]. SVM as a model for regression analysis,
uses hyperplane classifiers by mapping the input data into a multidimensional space and
comparing it to the output data [13]. Garcia Nieto et al. [14] conducted a study to predict
the higher heating value of biomass and compared the performance of different models.
The cubic-SVM model showed the strongest correlation between predicted and actual
values, with the highest R2 value of 0.94 and the lowest RMSE and MAE values of 0.39 and
0.32, respectively. Its MBE value was close to zero (0.0012), indicating minimal bias in the
predictions. In contrast, the random forest model showed the weakest performance with
the lowest R2 value (0.59) and the highest RMSE (1.06) and MAE values (0.86), indicating
lower accuracy and precision in predicting the higher heating value of biomass. In his
study, Afolabi et al. [15] (2022) compared different ML models, including decision tree
(DT), random forest (RF), and artificial neural networks (ANN) using criteria of statistical
measures. The table shows the mean absolute error (MAE), mean square error (MSE), and
root mean square error (RMSE) for each model, allowing an evaluation of their performance.
The DT model has an MAE of 1.48, an MSE of 4.36, and an RMSE of 2.09. The RF model
has an MAE of 1.01, an MSE of 1.87, and an RMSE of 1.37, indicating better performance
compared with the DT model. The ANN model has an MAE of 1.21, an MSE of 2.43, and an
RMSE of 1.56, indicating better performance compared to the DT model, but slightly worse
than the RF model. Overall, the random forest model shows the best performance among
the three models based on the lowest values of MAE, MSE, and RMSE. Liu et al., 2022 [16],
used a RFR to predict the HHV of torrefied biomass. The model RF was trained with
10-fold cross-validation to fit the hyperparameters. The model achieved high prediction
accuracy, with an R2 value of 0.91 for the test dataset. The results of this study show that
the random forest model (RF) has the ability to estimate the higher heating value (HHV)
of torrefied biomass with a high degree of precision. Dubey and Guruviah (2022) [17]
constructed a support vector machine (SVM) model for predicting and optimizing the
prediction of HHV of agricultural biomass based on proximate analysis data. The main
objective of this paper is to develop nonlinear machine learning models in the form of
higher-degree polynomials, SVM, RFR, and ANN, and to investigate the possibility of
HHV modeling in terms of the input parameters of biomass structural analysis, which
include the variables cellulose, hemicellulose, and lignin. For a better understanding of the
overall concept of the work, Figure 1 shows the flowchart of the research conducted with
the aim of determining the most appropriate machine learning model in terms of predictive
ability, but also in terms of the error rate of each model. The present study is characterized
by the comparative evaluation of different machine learning approaches, which include
polynomial functions, support vector machines (SVM), random forest regressors (RFR),
and artificial neural networks (ANN), with the aim of predicting the higher heating value
(HHV) of biomass through structural analysis parameters.
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By means of Yoon’s global sensitivity method (based on the ANN model), the influence
of the input variables on the output values is investigated. In order to compare the
above models in terms of the different modeling errors, literature and calculated data are
compared with the model. The coefficient of determination is taken as the main parameter
of the model comparison, through which the most appropriate model for estimating the
HHV biomass is determined.
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2. Materials and Methods
2.1. Data Collection

Data from different types of biomasses were used for the study, including input
variables, percentages of cellulose, lignin, hemicellulose, and HHV on a dry basis. The data
used for the analysis were taken from published papers [1,18,19] and are listed in Table S1
(overall, 235 samples). The large differences between the minimum and maximum values
also allow for the construction of a more universal model for the prediction of HHV from
the above variables.

2.2. Data Processing

The Python (Python 3.10) [20] libraries Pandas, Seaborn, Matplotlib.pyplot, and
NumPy [21–24] were imported to create a pair plot for the dataset used. These libraries
were used extensively for data analysis and plotting [25]. The corr() function, which calcu-
lates the pairwise correlation between all columns, was used to calculate the correlations
between the features of the data frame. To display only the upper triangle of the heatmap, a
triangular mask was created using the NumPy module. The heatmap was created with the
Seaborn heatmap() function, the correlation matrix as input, and the mask used to annotate
the correlation values. To demonstrate the distribution of each feature and the pairwise
correlations, a pair plot was created using Seaborn, and the two plots were combined into a
single figure using the Matplotlib library. To evaluate the effectiveness and performance
of the support vector machine (SVM), random forest regression (RFR), polynomial, and
artificial neural network (ANN) models in calculating the higher heating value (HHV)
based on input data from the structural analysis components, several statistical parameters
were calculated. These included the reduced chi-square (X2) (1), root mean square error
(RMSE) (2), coefficient of determination (R2) (3), mean systematic error (MBE) (4), mean
percentage error (MPE) (5), total squared error (SSE) (6), and average absolute relative
deviation (AARD) (7). The RMSE values indicate the efficiency of the model by comparing
calculated values with experimentally measured values. The MBE values are used to
determine the standard deviation between the predicted and measured values [26]. These
statistical parameters were calculated using equations [27–29]. In addition, Yoon’s method
of global sensitivity (8) was used to evaluate the direct influence of the input parameters
on the output variables, which corresponds to the weighting coefficients (w) within the
ANN model [30].

x2 =

N
∑

i=1
(xpredicted,i − xexperimental,i)

2

N − n
(1)

RMSE =

[
1
N

·
N

∑
i=1

(xpredicted,i − xexperimental,i)
2

]1/2

(2)

R2 = 1 −

n
∑

i=1

[
xpredicted

i − xexperimental
i

]
2

n
∑

i=1

[
xpredicted

i − xm
]

2
, xm =

n
∑

i=1
xexperimental

i

n
(3)

MBE =
1
N

·
N

∑
i=1

(xpredicted,i − xexperimental,i) (4)

MPE =
100
N

·
N

∑
i=1


∣∣∣xpredicted,i − xexperimental,i

∣∣∣
xexperimental,i

 (5)

SSE =
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∑
i=1
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2 (6)
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AARD =
100
n

n

∑
i=1

∣∣∣xpredicted
i − xexperimental

i

∣∣∣
xexperimental

i

(7)

RIij(%) =

n
∑

k=0
(wik · wkj)

m
∑

i=0

∣∣∣∣ n
∑

k=0
(wik · wkj)

∣∣∣∣ · 100% (8)

where N is population size, n is sample size, xpredicted indicates predicted value, xexperimental

is experimental value. In this study, the C++ programming language [31] was used to
implement ML models (ANN, SVM, and RFR). C++ was chosen because of its high per-
formance and efficient memory management, which are essential for processing large and
complex datasets [32]. The low-level control of the language also enabled the optimization
of algorithms and the implementation of advanced techniques in the ML models. Before
the models were created, all the data were divided into a part for training and a part for
testing the model in a 70:30 ratio.

2.3. SVM Modelling

SVM models are based on theories of averaging and are algorithms that can be used for
supervised learning for regression. SVM as regression models make predictions by splitting
the data into a part for learning and testing the model and are suitable for predicting the
HHV of biomass. In models for nonlinear applications, the input low-dimensional space
vectors must first be transformed with a nonlinear function (9) (Φ) [14]:

f (x) = wTΦ(x) + b (9)

where w and b represent weight vector and intercept of the model.
The SVM model was created to predict HHV biomass based on the input parameters

of the structural analysis. The model was created as regression type 1 with a training
constant of 10. The epsilon measure of the model is set to 0.1, while the radial basis function
(gamma value) is set to 1.00. The total number of model iterations is 10,000.

2.4. Polynomial Regression Model

The created polynomial model relies on relations between variables based on structural
analysis of biomass and HHV values of output data. To adjust for possible causes of
variation, a statistical experimental design was used to examine the effects of three variables
(factors) on an outcome variable while controlling for a grouping variable (block). The
polynomial model of this experimental design was as follows:

HHV = β0 + β1 · Cel + β2 · Cel2 + β3 · Lig + β4 · Lig2 + β5 · Hem + β6 · Hem2 + β7 · Cel · Lig + β8 · Cel · Hem + β9 · Lig · Hem

where HHV is the response variable, Cel, Lig, and Hem are the three factors, β/1 is the
intercept, β/1–β/1 are the main effects of the factors, β/1–β/1 are the two-way interactions
between the factors.

2.5. RFR Modeling

RFR are learning algorithms that combine multiple random decision trees and make
anticipation based on the average value; they include methods of classification and regres-
sion, and use a certain number of random trees [33–35]. During RFR model evaluation, the
number of trees was set to values of 100, 200, 300, 400, 500, and 10,000.
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2.6. ANN Modelling

MLP is one of the types of ANN and is widely used in computing. The main advantage
of this type of network is that it can “learn” to make connections between input and output
data, which is very useful in predicting nonlinear problems in areas where large amounts
of data have to be processed [36–38]. Number of artificial neurons in the hidden layer
may vary based on the error and trial methods. The learning process of a neural network
involves processing input data, which is then converted to the desired output data [39].
The two basic types of network learning processes are supervised and unsupervised. In
the supervised learning process, the model is provided with ANN output data, based
on which it compares the values obtained [40]. The developed ANN model was trained
100,000 times with a random number of neurons in the hidden layer (5–20). Different
activation functions and random values for weighting coefficients and bias were used. The
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was used to solve the nonlinear
optimization during the modeling process of ANN [41]. The neural network model, written
in matrix notation, contains biases and weight coefficients for the hidden and output layers,
represented by matrices and vectors W/1, B/1, W/1, and B/1, respectively. Y is the output
value, while f /1 and f /1 denote the transfer functions for the hidden and output layers,
respectively. X represents the matrix of the input layer [42]:

Y = f1(W2 · f2(W1 · X + B1) + B2) (10)

3. Results
3.1. Data Distribution

According to the literature data obtained, the cellulose concentration ranged between
10.66 and 56.62%, while lignin percent scoped between 2.39 and 22%; hemicellulose spanned
across the range of 5.97–37%, whereas the obtained HHV value was between 12.54 and
19.25 MJ kg−1. The extreme values of the collected data varied greatly due to the different
types of biomasses, which are characterized by different chemical compositions.

Figure 2 shows the distribution of the individual variables and the correlation between
the observed variables and the HHV biomass.

The correlation coefficient between the observed variables is positive and statistically
significant at a coefficient of p ≤ 0.01. The correlation coefficient (r) of HHV and the
variable Hem is 0.74, while it is 0.88 for lignin and 0.89 for cellulose. When looking at
the distribution, certain behavioral patterns of the observed values become visible. In
the dataset used to build the model, the largest part consisted of data on the energy crop
of Miscanthus (192 samples), whose (for example) calorific value varies from 15.53 to
19.52 MJ kg−1, while the other biomass samples have a lower average calorific value
(12.54–17.07 MJ kg−1), which can explain the uneven distribution of the data.
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Figure 2. Pair plot with correlation coefficient of the observed values from the structural analysis of
the biomass (statistical significance: * p ≤ 0.01).

3.2. Polynomial Regression Model

With regard to the proposed higher-degree polynomial model, the intercept values,
the main effect on the factors, and the interaction of the effects on several factors were
calculated and presented (Table 1).

Table 1. Estimated effects of factors on HHV output.

Factor Effect ε

β0 17.38 0.18
β1 0.71 0.54
β2 0.48 0.76
β3 5.07 0.76
β4 −1.61 1.95
β5 0.16 0.79
β6 0.44 1.67
β7 −2.57 2.29
β8 1.51 1.67
β9 −2.28 2.29

β0—intercept value; β1–β9—main effects; ε—standard error.

3.3. RFR Model

During the development of the RFR model to predict HHV values, a large number of
decision trees were constructed (1940). The data for RFR were split into a random sample
of 30% and a subsample of 50%.



Mathematics 2023, 11, 2098 8 of 14

3.4. ANN Model

The proposed ANN model consists of an input layer, a hidden layer, and an output
layer with architecture 3-4-1 (number of artificial neurons in the input, hidden, and output
layers). The weights and biases (Table 2) were determined by randomly searching for
values that would make the model sufficiently accurate in modeling the output values.

Table 2. Weights and biases of input and output layers of the developed ANN model.

Artificial Neuron
Number

Input Layer Output Layer

Weight Coefficient
Bias

Weight Coefficient
Bias

Cel Lig Hem HHV

1 8.70 −5.06 −1.02 −3.82 −0.47

1.46
2 −3.00 −1.80 −1.91 1.55 −0.24
3 3.35 −2.33 0.37 −0.53 1.72
4 2.38 −1.87 0.45 −0.02 −1.74

Cel—cellulose; Lig—lignin; Hem—hemicellulose; HHV—higher heating value.

The model presented showed the greatest predictive ability in the architecture with
four neurons in the values.

3.5. Model Performance

The results (Table 3) show that the MLP neural network model outperforms the other
three models in terms of RMSE, AARD, and R2. The low RMSE value indicates that the
ANN model predicts the output variables with high accuracy. The high AARD value
indicates that the ANN model has a low relative error and is therefore acceptable for
practical applications. Several measures, such as R2 and MBE, indicate that the RFR model
performs quite well. The low MBE value indicates that the RFR model predicts the output
variables with low bias. Nevertheless, the RMSE and AARD values show that the model
has more error than the MLP model. For most measurements, the SVM model performed
worse than the other models. The SVM model has more relative errors than the other
models, indicating that it is less suitable for real-world applications. The low R2 value
indicates that the input variables explain a smaller proportion of the variation in the output
variables. The skewness value indicates that the error distribution of the SVM model’ is
nearly symmetric.

Table 3. Performance of developed ML models.

Model Net. Name Training
Perf. Test Perf. Training

Error Test Error Training
Algorithm

Error
Function

Hidden
Activation

Output
Activation

ANN MLP 3-4-1 0.88 0.95 0.15 0.07 BFGS 82 SOS Exponential Identity

RFR

-

0.89 0.92

- - - - - -SVM 0.85 0.89

Polynomial 0.85 0.92

ANN—artificial neural network; RFR—random forest regression; SVM—support vector machine.

The ANN was trained using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimiza-
tion technique with an exponential hidden layer activation function and an identity output
activation function. With training and testing errors of 0.15 and 0.07, respectively, the ANN
achieved a training performance of 0.88 and a testing performance of 0.95. The training
performance of the RFR model was 0.89, and the test performance was 0.92. SVM and poly-
nomial regression models achieved training and test values of 0.85 and 0.89, respectively.
Overall, it was found that the MLP neural network performed better than the other models
with the specified architecture and training conditions.
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The scatter plot is one of the most commonly used types of visualization that shows
the behavior of data on the x-y axis [43,44]. Figure 3 shows the scatter plot of the overlap of
the predicted data with the experimentally determined values for the developed models in
the form of polynomials, SVM, RFR, and ANN.
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Figure 4 shows the ability of the models to predict HHV biomass as a function of the
number of observations. As can be seen, the models generally agree well with the observed
data, with the highest agreement observed between observations 50 and 150, i.e., when the
data are clustered and there is little variability. The model ANN had the lowest estimation
error with respect to the number of observed samples of the models listed.
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Figure 4. Comparison of nonlinear models ((a) ANN, (b) RFR, (c) SVM, and (d) polynomial) in the
estimation of HHV biomass regarding the observation number.
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3.6. Global Sensitivity Analysis of the Developed ANN Model

The global sensitivity analysis is performed according to the Yoon method, which
calculates the direct influence of the input parameters on the output values. Figure 5 shows
the relative importance (%) of each variable in the structural analysis of biomass for the
output value of HHV. The range in which the relevance factor is shown is between −1 and
1. The influence of HHV is affected by increasing the value of lignin and hemicellulose and
decreasing the input value of cellulose.
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Figure 5. Relative importance (%) of structural analysis variables on HHV.

Figure 5 shows the influence of Cel (−56.78%), Lig (40.27%), and Hem (2.94%). Consid-
ering the presented influencing factors and their relative importance, it can be concluded
that they affect the total output value of HHV by increasing the input values of lignin and
hemicellulose and decreasing cellulose.

The global sensitivity analysis showed that increasing the value of lignin and hemicel-
lulose and decreasing the value of cellulose has an impact on the effects of HHV. Consid-
ering the proportional relevance of the presented influencing factors, it can be concluded
that they affect the overall output value of HHV by increasing the input values of lignin
and hemicellulose and decreasing the input value of cellulose. Overall, the MLP neural
network model performed best in predicting the HHV of different types of biomasses.
Global sensitivity analysis revealed that the most important parameters affecting HHV
were lignin and hemicellulose. Future research could focus on improving model accuracy
by adding more diverse datasets and conducting controlled experiments to reduce the
effects of external influences.

3.7. Goodness of Fit

To determine the ability of the model to predict HHV biomass with respect to the
input parameters of the structural analysis, it is necessary to calculate statistical parameters
to assess the model’s ability to predict, as well as to compare the individual models to make
it clear which nonlinear model is the most accurate in forecasting.

Table 4 shows the calculated statistical test “goodness of fit” in relation to the polyno-
mials, SVM, RFR, and ANN models based on the calculation of the HHV value in relation
to the input parameters of the structural analysis of biomass.
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Table 4. Statistical test “Goodness of fit”.

Model X2 RMSE MBE MPE SSE AARD R2 Skew Kurt SD Var

ANN 0.25 0.50 0.03 2.22 57.98 100.87 0.90 −0.90 5.20 0.50 0.25
RFR 0.29 0.54 0.01 2.45 68.26 113.90 0.89 −0.50 2.47 0.54 0.29
SVM 0.35 0.59 0.03 2.74 80.97 158.04 0.86 −0.03 1.72 0.59 0.35

Polynominal 0.32 0.56 0.00 2.62 74.89 230.35 0.87 −0.23 2.37 0.57 0.32

X2-chi-squared test; RMSE—root mean square error; MBE—mean bias error; MPE—mean percentage er-
ror; SSE—sum squared error; AARD—average absolute relative deviation; R2—coefficient of determination;
Skew—skewness; Kurt—kurtosis; SD—standard deviation; Var—variance.

The ANN model had the best performance based on several metrics, such as X2, RMSE,
AARD, and R2. The low RMSE value indicates that the ANN model has high accuracy in
predicting the output variables. The high AARD value indicates that the ANN model has
a low relative error, making it suitable for practical applications. The R2 value indicates
that a high proportion of the variance in the output variable can be explained by the
input variables. The RFR model had relatively good performance based on some metrics,
such as R2 and MBE. The low MBE value indicates that the RFR model has a low bias in
predicting the output variables. However, the RMSE and AARD values indicate that the
model has higher errors compared to the model ANN. The model, in the form of SVM,
had lower performance compared to the other models based on most metrics. The high
AARD value indicates that the SVM model has higher relative errors compared to the other
models, making it less suitable for practical applications. The low R2 value indicates that
a smaller proportion of the variance in the output variable can be explained by the input
variables. The skewness value indicates that the error distribution in the SVM model is
nearly symmetric, while the low X2 value and RMSE indicate good agreement between the
predicted and actual values. The MBE of 0.00 shows that the predictions of the models do
not tend to overestimate or underestimate the actual values. The developed SVM model
showed the best results, with 39 support and weight vectors.

4. Discussion

Analyzing the composition of biomass and its calorific value is crucial for understand-
ing and optimizing its use as a renewable energy source. Dai et al. 2021 [45] state that
there is a need to develop a model for predicting the energy properties of biomass based on
various analyses that enable the use of biomass resources in energy applications. Consider-
ing the specifics of the connection between input parameters and output values of HHV
biomass, the ML model proved to be more accurate in application than the existing linear
models. Xing et al. (2019) [46] conducted a study in which they examined the possibility of
applying the ML model to the estimation of HHV biomass based on ultimate and proximate
analysis. Unlike empirical models, which showed a lower predictive ability (R2 < 0.70),
ML models (ANN, SVM, and RF) showed better performance in HHV biomass modeling
(R2 > 0.90). Afolabi et al. (2022) [15] conducted a study in which they used different ML
models to estimate the HHV of different biomass classes. They used MAE, MSE, and
RMSE as statistical measures of model error. Among others, RF and ANN models were
created, which had satisfactory performance in terms of modeling error for the statistically
calculated parameters MAE, MSE, and RMSE (1.01, 1.87, 1.37, 1.21, 2.43, and 1.56). Chen
et al. (2022) [47] provided research results on the evaluation of HHV biochar. Gradient-
boosting regression (GBR), RF, SVM algorithms, and linear regression methods were de-
veloped through modeling. For the development, 52 samples were collected, and 97 were
taken from published literature sources so that the models could be optimized. Based on
52 experimental data points, the machine learning (ML) methods showed better predictive
capabilities (training R2 ≥ 0.96) for the higher heating value (HHV) of biochar compared
to multiple linear regression (MLR) (training R2 < 0.94). The gradient boosting regression
(GBR) algorithm successfully predicted the HHV of biochar (test dataset) using finite and
proximal analysis, with R2 = 0.98, MAE = 0.83, and RMSE = 1.08 when trained with the
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experimental dataset. The random forest (RF) and support vector machine (SVM) models
performed similarly well in predicting HHV, with R2 = 0.97, MAE = 0.93, RMSE = 1.22,
and R2 = 0.97, MAE = 0.93, and RMSE = 1.23, respectively. Hosseinpour et al. (2018) [48]
developed a new network of fuzzy partial least squares combined with principal compo-
nent analysis (PCA-INFPLS) to estimate HHV biomass based on the input parameters of
solid carbon, volatile matter, and ash content. The developed model PCA-INFPLS shows
high performance in predicting the HHV, with modeling errors R2 > 0.96, MSE < 0.51, and
MAPE < 2.5%, so it can be concluded that the proposed model is suitable for modeling.
Ghugare et al. (2014) [49] developed a genetic program (GP) and a multilayer perceptron
(MLP) model to evaluate the fuel properties of solid biomass. The GP and MLP models
showed good predictive performance in terms of accuracy and generalization. They achieve
high correlation coefficients (>0.95) and low MAPE (<4.5%) when comparing experimental
and model-predicted higher heating values (HHV).

In this research, four models were developed and compared: polynomial regression,
support vector machines (SVM), random forest regression (RFR), and artificial neural
networks (ANN). The ANN model, specifically a multilayer neural perceptron (MLP),
showed superior performance in terms of RMSE (0.50), AARD (100.87), and R2 (0.90)
compared to the other models, indicating high accuracy and low relative error. The
RFR model also performed well, but with higher errors than the ANN model. The SVM
model showed lower performance with higher relative errors and lower R2 values (0.86),
indicating that it is less suitable for practical applications. A global sensitivity analysis
showed that the most important parameters affecting HHV are lignin and hemicellulose,
while cellulose has a negative influence. These results have implications for optimizing
biomass composition to achieve higher heating values. The model ANN, which uses
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization method and an exponential
hidden layer activation function, showed the best performance in predicting the HHV for
different types of biomasses.

Future research should focus on improving the accuracy of the models by including
more diverse datasets and conducting controlled experiments to minimize the influence
of external factors. In addition, exploring other modeling techniques and refining current
models, especially the ANN, can help develop more accurate predictive tools for biomass
heating value. Such improvements can facilitate better decision-making for the efficient
use of biomass as a renewable energy source, help address energy challenges, and mitigate
climate change.

5. Conclusions

• Recently, more attention has been paid to the development of various models for
predicting the energy parameters of biomass fuels. The factors cellulose, hemicellulose,
and lignin influence the HHV.

• Using Yoon’s method of global sensitivity, the increase in HHV biomass was found
to be influenced by the increase in the parameters lignin and hemicellulose and the
decrease in cellulose content.

• Four developed nonlinear models showed high performance in estimating HHV
biomass: ANN (R2 = 0.90), RFR (R2 = 0.89), SVM (R2 = 0.86), and polynomial
(R2 = 0.87).

• Using the statistical test “goodness of fit”, the ANN model showed the smallest errors
in estimating HHV and was determined based on the calculated parameters X2, RMSE,
MBE, MPE, SSE, and AARD.

• Among the developed models, ANN showed the best ability to summarize, generalize
data, and predict.

• To reduce the error rate in the development of the ML model for estimating energy
values of biomass, the expansion of the database, the categorization of the data, and
the development of new algorithms are required for future research.
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4. Koçar, G.; Civaş, N. An overview of biofuels from energy crops: Current status and future prospects. Renew. Sustain. Energy Rev.
2013, 28, 900–916. [CrossRef]

5. Olatunji, O.; Akinlabi, S.; Oluseyi, A.; Peter, M.; Madushele, N. Experimental investigation of thermal properties of Lignocellulosic
biomass: A review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 413, 012054. [CrossRef]

6. Boumanchar, I.; Charafeddine, K.; Chhiti, Y.; Alaoui, F.E.M.; Sahibed-Dine, A.; Bentiss, F.; Jama, C.; Bensitel, M. Biomass higher
heating value prediction from ultimate analysis using multiple regression and genetic programming. Biomass-Convers. Biorefin.
2019, 9, 499–509. [CrossRef]

7. Obafemi, O.; Stephen, A.; Ajayi, O.; Nkosinathi, M. A survey of Artificial Neural Network-based Prediction Models for Thermal
Properties of Biomass. Procedia Manuf. 2019, 33, 184–191. [CrossRef]

8. Grossi, E.; Buscema, P.M. Introduction to artificial neural networks. Eur. J. Gastroenterol. Hepatol. 2007, 19, 1046–1054. [CrossRef]
9. Kartal, F.; Özveren, U. A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®.

Energy 2020, 209, 118457. [CrossRef]
10. Pattanayak, S.; Loha, C.; Hauchhum, L.; Sailo, L. Application of MLP-ANN models for estimating the higher heating value of

bamboo biomass. Biomass-Convers. Biorefin. 2020, 11, 2499–2508. [CrossRef]
11. Johansson, U.; Boström, H.; Löfström, T.; Linusson, H. Regression conformal prediction with random forests. Mach. Learn. 2014,

97, 155–176. [CrossRef]
12. Zhang, H.; Zimmerman, J.; Nettleton, D.; Nordman, D.J. Random Forest Prediction Intervals. Am. Stat. 2019, 74,

392–406. [CrossRef]
13. Sun, J.; Zhang, J.; Gu, Y.; Huang, Y.; Sun, Y.; Ma, G. Prediction of permeability and unconfined compressive strength of pervious

concrete using evolved support vector regression. Constr. Build. Mater. 2019, 207, 440–449. [CrossRef]
14. Nieto, P.J.G.; García-Gonzalo, E.; Paredes-Sánchez, J.P.; Sánchez, A.B.; Fernández, M.M. Predictive modelling of the higher heating

value in biomass torrefaction for the energy treatment process using machine-learning techniques. Neural Comput. Appl. 2018, 31,
8823–8836. [CrossRef]

15. Afolabi, I.C.; Epelle, E.I.; Gunes, B.; Güleç, F.; Okolie, J.A. Data-Driven Machine Learning Approach for Predicting the Higher
Heating Value of Different Biomass Classes. Clean Technol. 2022, 4, 1227–1241. [CrossRef]

16. Liu, X.; Yang, H.; Yang, J.; Liu, F. Application of Random Forest Model Integrated with Feature Reduction for Biomass Torrefaction.
Sustainability 2022, 14, 16055. [CrossRef]

17. Dubey, R.; Guruviah, V. Machine learning approach for categorical biomass higher heating value prediction based on proximate
analysis. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 3381–3394. [CrossRef]

18. Mansor, A.M.; Lim, J.S.; Ani, F.N.; Hashim, H.; Ho, W.S. Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple
biomass. Chem. Eng. Trans. 2019, 72, 79–84. [CrossRef]

https://www.mdpi.com/article/10.3390/math11092098/s1
https://www.mdpi.com/article/10.3390/math11092098/s1
https://doi.org/10.1016/j.fuel.2013.08.023
https://doi.org/10.1080/15567036.2016.1248798
https://doi.org/10.1016/j.rser.2013.08.022
https://doi.org/10.1088/1757-899X/413/1/012054
https://doi.org/10.1007/s13399-019-00386-5
https://doi.org/10.1016/j.promfg.2019.04.103
https://doi.org/10.1097/MEG.0b013e3282f198a0
https://doi.org/10.1016/j.energy.2020.118457
https://doi.org/10.1007/s13399-020-00685-2
https://doi.org/10.1007/s10994-014-5453-0
https://doi.org/10.1080/00031305.2019.1585288
https://doi.org/10.1016/j.conbuildmat.2019.02.117
https://doi.org/10.1007/s00521-018-3870-x
https://doi.org/10.3390/cleantechnol4040075
https://doi.org/10.3390/su142316055
https://doi.org/10.1080/15567036.2022.2065386
https://doi.org/10.3303/CET1972014


Mathematics 2023, 11, 2098 14 of 14
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The aim of the study was to investigate the changes in ultimate, proximate 
analysis and calorific properties of Miscanthus x Giganteus with three types 
of planting materials (two rhizomes - R1 and R2 - and one seedling – S) and 
three ash fertiliser treatments (P0, P2, and P5) were included in the study. 
The research further examined their effects on crop yield, stem height and 
various chemical properties. The results showed that the maximum yield 
was obtained with the R1 x P2 plant type, while the minimum yield was 
recorded with the R2 x P2 plant type. In addition, the greatest average stem 
height (3.34 m) was recorded for the R2 x P5 plant type. Significant 
differences were also found in the chemical components between the plant 
types and treatments. For example, the highest ash content of 2.25% was 
found in plant type 'S' x P5, while the highest coke content of 14.48 % was 
found in plant type R1 x P5. The statistical analysis confirmed that planting 
material and ash fertilisation had significant influence on the 
physicochemical properties of Miscanthus x Giganteus. This consequently 
affects the calorific value, with the average higher and lower heating value 
being 18.32 and 17.04 MJ/kg, respectively. The neural regression network 
models showed robust predictive performance for the higher (HHV) and 
lower heating value LHV, with low chi-square values (Χ2) and high 
coefficients of determination (R2). 
Key words: Miscanthus x Giganteus, fertilisation, energy properties, 
artificial neural network, modelling. 

1. Introduction 

Energy derived from biomass plays a crucial role in achieving the European Union's renewable 
energy targets for 2030 and beyond. However, this promising sector must manage the complexity of 
producing, processing and using biomass in a way that is both sustainable and efficient. Key to this 
strategy is achieving a balance that optimises greenhouse gas mitigation and preserves ecosystem 
services [1-3]. Compared to seed propagation, vegetative propagation of triploid Miscanthus x 
Giganteus is cost-intensive, making rhizomes the preferred choice for planting material due to their 

mailto:latopezo@yahoo.co.uk
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integral role in vegetative propagation [4]. This biomass source not only has the potential to reduce 
greenhouse gas and pollutant emissions generally associated with increased fossil fuel use [5], but 
also offers exceptional opportunities for energy production due to its dense growth [6]. However, to 
realise the full potential of Miscanthus x Giganteus as a bioenergy feedstock, effective nitrogen and 
harvest management strategies are required [7], highlighting the need for targeted cultivation 
practises. Importantly, Miscanthus x Giganteus also has the added benefit of sequestering carbon in 
the soil, further contributing to climate change mitigation [8]. Morozova et al., (2020) [9] in research 
reports the average values of Miscanthus x Giganteus in the range of 20.5 – 30.4 t DM/ha in relation 
to different harvest periods. The increase in the global use of biomass for energy generation has 
implications for waste management, particularly in terms of the escalating volumes of biomass ash 
produced. Conventional landfill disposal methods are not only costly, but also result in potentially 
valuable resources being thrown away [10]. As an alternative, use biomass ash can as a fertiliser [11], 
which enriches agricultural soils with valuable nutrients, especially if mineral fertilisers are not used. 
This approach is not only resource-efficient, but also environmentally conscious and carries minimal 
risk of harmful environmental impacts [12]. Application of fly ash not exceeding 25% of soil weight 
can strengthen plant biomass while maintaining lower metal(loid) concentrations, potentially 
improving agricultural yields [13]. As a fertiliser, wood ash provides readily available nutrients such 
as phosphorus, calcium, magnesium, potassium and boron. It can increase soil pH and concentrations 
of the main nutrients while reducing the availability of aluminium and less important elements. It also 
reduces manganese toxicity, which could improve crop yields [14]. Ash in composting improves 
humification of organic matter and nutrient content, improving compost quality and plant health. It 
also helps to reduce volatile solids and improve the stability of the compost, increasing its 
marketability [15]. Ma et al., (2021) [16] notes that Miscanthus × giganteus shows inconsistent 
responses to nitrogen fertiliser, possibly influenced by environmental factors, soil types, nitrogen 
sources, plant age and timing of fertilisation. Fertilisation may possibly affect the associated microbial 
community in the soil, but the exact mechanisms remain unknown. Smith & Slater, (2010) [17] 
conducted a study on the effects of organic (cattle and pig manure, chicken litter and unlimed and 
limed sewage) and inorganic fertiliser (NPK) application on energy crops in Wales, including 
Miscanthus x Giganteus, Arundo donax and Phalaris arundinacea. The study found that Miscanthus x 
Giganteus responded with increased growth in the second year to all fertilisers applied, with inorganic 
nitrogen applications being more effective than organic fertilisers. Adjuik et al., (2020) [18] 
investigated the effects of different fertiliser treatments on biomass yield and greenhouse gas 
emissions of Miscanthus x Giganteus grown on set-aside agricultural land. No significant differences 
were found between the treatments, which included digestate from the biogas plant, synthetic fertiliser 
(urea), hydrochar and a control. Due to its robust combustion properties, Miscanthus x Giganteus can 
be used as a biofuel, especially in the form of pellets or briquettes [19]. In recent years, machine 
learning techniques have gained prominence in the renewable energy production sector, particularly in 
the area of modelling and prediction [20]. These computational strategies, such as artificial neural 
networks have been used to improve the prediction of biomass gasification process outcomes [21] 

In view of the evidence presented in the above findings, it is intended to further investigate the 
effects of different planting patterns and different ash treatments on the physicochemical composition 
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and energy potential of Miscanthus x Giganteus biomass. The feasibility of implementing artificial 
neural network regression models to estimate calorific value will also be evaluated.  

2. Materials and methods 

2.1. Establishment of the crop and application of ash fertiliser measures 
At the University of Zagreb experimental site (Zagreb, Croatia), an experimental field was 

established to investigate the impact of ash fertilization on the growth dynamics of Miscanthus x 
Giganteus. Three types of plant material were used for the experiment: rhizomes of the Croatian 
genotype (R1), rhizomes of the English origin (genotype R2) and seedlings of the Polish genotype (S). 
The rhizomes and seedlings are planted in plots of 4 m x 10 m (40 m2), while the seedlings are planted 
in plots of 2.4 m x 10 m (24 m2). A distance of 3 m is maintained both between plots and between 
replicates. The experimental design followed a split-split plot scheme with three repetitions, resulting 
in a total of 27 primary plots. The main factor in the experiment is the type of planting material (R1, 
R2, S), the sub-factor is the ash fertilisation (P0, P2, P5).  

2.2. Physicochemical and calorimetric analysis 
From the experimental point of view, the analysis of Miscanthus x Giganteus biomass was 

performed in the laboratory of the University of Zagreb, Faculty of Agriculture, according to standard 
testing methods. Within the scope of the study, several analyses were performed on the sample. Dry 
matter analysis (DM) was performed using a Memmert laboratory dryer [22] according to the 
procedure specified in CEN /TS 14774-2:2009 [23]. Proximate Analysis, which included the 
evaluation of ash, coke, volatile matter (VM), and Fixed Carbon (FC) concentration, was performed 
using the method of burning the oven-dry sample in a crucible in a muffle furnace [24] according to 
EN ISO 18122:2015 [25] and CEN /TS 15148:2009 [26]. Ultimate Analysis encompassed the 
measurement of carbon (C), hydrogen (H), nitrogen (N), oxygen (O) and sulphur (S) using a Vario 
Macro CHNS analyzer [27] as described in the standards EN 15104:2011 [28] and EN 15289:2011 
[29]. The heating value, in particular the HHV, was determined using an adiabatic bomb calorimeter 
[30] according to the method CEN /TS 14918:2005 [31]. 

2.3. Data processing 
After the laboratory analyses, the data obtained were analysed using TIBCO Statistica 13.3.0 

software (Palo Alto, CA, USA; 2017) [32]. In addition to basic statistical methods, principal 
component analysis (PCA) was also performed to reduce the dimensionality of the data and identify 
the most significant variability within the dataset, allowing for a better understanding of hidden 
structural patterns [33]. In parallel with the previously described methods, a univariate analysis was 
carried out to determine the influence of parameters such as the type of planting material, ash 
treatment and their interactive effects on the changes in biomass properties of Miscanthus x 
Giganteus.  

2.4. Regression neural network modelling of calorific value  
The last part of the research involved building a regression model in the form of an artificial 

neural network to estimate the energy values (HHV and LHV) of Miscanthus x Giganteus biomass 
based on the input parameters of the ultimate analysis. The first step was to split the data into 70% for 
learning and 30% for testing the model, which is considered a standard data split [34]. After data 
preparation, the regression models were built according to the following equation (1) [35]: 
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1 2 2 1 1 2( ( ) )Y f W f W X B B= ⋅ ⋅ + +     (1) 
 
Where Y is the output value; f1, f2 - transfer functions of the hidden and output layers; W1,2 - weight 
coefficients of the hidden and output layers; B1,2 - hidden and output layer biases. 

 
After calculating the output values, statistical error tests and residual analyses were 

performed, including Chi-square test (Χ2) (2), Root Mean Square Error (RMSE) (3), Mean Bias Error 
(MBE) (4), Mean Percentage Error (MPE) (5), Sum Squared Error (SSE) (6), Average Absolute 
Relative Error (AARD) (7) and Coefficient of Determination (R2) (8) [36,37]: 
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Where p in the index and exponent stands for predicted values; e in the index and exponent for 
experimentally determined values. 

The last part of optimizing neural network regression models involved the method of global 
sensitivity based on the data obtained by artificial neural networks to find the optimal pattern. The 
Yoon's global sensitivity method was used according to the following formula (9) [38]: 
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3. Results 
3.1. Yield 

Figure 1 shows a graphical representation of the yield and average plant height of Miscanthus x 
Giganteus in the study conducted. 

 

 

Figure 1. Miscanthus x Giganteus yield and plant height regarding planting type and ash 
treatment 

 
To facilitate plotting yield and plant height variables on the y-axis, a logarithmic scale was used 

as a method to adjust the resolution of the data in the plot [39].  
3.2. Ultimate analysis 

The table 1 presents the results of a study examining the impact of different treatments (P0, P2, 
P5) on three different planting types (R1, S, R2), assessing ultimate analysis. 

 
Table 1. Ultimate analysis of studied biomass of different Miscanthus x Giganteus in 

relation to different planting material and ash treatment 

No. 
Planting 
type 

Treatment N (%) C (%) S (%) H (%) O (%) 

1 
R1 

P0 0.57±0.17a 50.8±0.55a 0.05±0.02a 5.77±0.06a 42.8±0.61c 
2 P2 0.74±0.15ab 51.17±0.55ab 0.05±0.02a 5.81±0.14a 42.22±0.61abc 
3 P5 0.56±0.16a 51.03±0.79ab 0.11±0.06b 5.86±0.06a 42.45±0.95bc 
4 

S 
P0 0.81±0.09b 50.97±0.54ab 0.06±0.03ab 5.85±0.07a 42.31±0.64abc 

5 P2 0.8±0.14b 50.96±0.67a 0.07±0.02ab 5.76±0.28a 42.41±0.69abc 
6 P5 0.76±0.07ab 50.87±0.8a 0.07±0.03ab 5.81±0.08a 42.49±0.88bc 
7 

R2 
P0 0.75±0.18ab 51.52±0.17ab 0.06±0.03ab 5.92±0.04a 41.74±0.28ab 

8 P2 0.71±0.1ab 51.54±0.18ab 0.06±0.02a 5.91±0.01a 41.79±0.15ab 
9 P5 0.75±0.15ab 51.79±0.09b 0.06±0.01ab 5.91±0.06a 41.5±0.21a 
Significance * * ** n.s. * 
Min 0.56 50.80 0.05 5.76 41.50 
Max 0.81 51.79 0.11 5.92 42.80 
Average 0.72 51.18 0.06 5.84 42.19 
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R1 - Rhizomes of the Croatian genotype; R2 - Rhizomes of the English genotype; S - seedlings of the 
Polish genotype; P0= Ash fertilization treatment (0 t/ha); P2= Ash fertilization treatment (2 t/ha); P5= 
Ash fertilization treatment (5 t/ha); Different letters (in columns) indicate difference according to 
Tukey HSD post hoc test (p ≤ 0.05); Statistical significance; * p ≤ 0.01; ** p ≤ 0.05. 
The analysis of the main components of the ultimate analysis variable is shown in figure 2. 

 

Figure 2. Prinicipal component analysis (PCA) of ultimate analysis 
 

3.3. Proximate analysis and calorific values 
Table 2 shows the results of a study that examined the effects of different treatments (P0, P2, P5) 

on three different types of plants (R1, S, R2), assessing proximate analysis and calorific values. 
 

Table 2. Proximate analysis and calorific values of studied biomass of different Miscanthus x 
Giganteus in relation to different planting material and ash treatment 

No. 
Planting 
type 

Treatment Ash (%) Coke (%) FC (%) VM (%) 
HHV 
(MJ/kg) 

LHV 
(MJ/kg) 

1 
R1 

P0 1.7±0.09a 12.97±0.43ab 10.12±0.41a 79.35±0.62b 18.21±0.34a 16.95±0.33a 
2 P2 1.79±0.09ab 12.21±1.11a 9.34±0.88a 80.06±1.55b 18.42±0.29ab 17.15±0.27b 
3 P5 2.1±0.11c 14.48±2.8b 9.7±0.92a 70.52±13.36a 18.2±0.25a 16.92±0.24a 
4 

S 
P0 1.98±0.31abc 13.2±0.57ab 10.08±0.63a 79.3±0.7b 18.29±0.3ab 17.01±0.29ab 

5 P2 2.01±0.09bc 13.23±0.54ab 10.03±0.51a 79.01±0.79b 18.28±0.27ab 17.02±0.28ab 
6 P5 2.25±0.38c 12.62±0.98ab 9.21±1.28a 79.36±0.74b 18.11±0.26a 16.84±0.25a 
7 

R2 
P0 1.81±0.16ab 12.83±0.41ab 9.86±0.46a 79.25±0.29b 18.46±0.22ab 17.16±0.21ab 

8 P2 1.8±0.06ab 12.65±0.84ab 9.75±0.76a 79.83±0.94b 18.28±0.16ab 17±0.16ab 
9 P5 1.78±0.12ab 12.28±1.32a 9.41±1.13a 79.91±1.25b 18.64±0.08b 17.35±0.08b 
Significance * ** n.s. * * * 
Minimum 1.70 12.21 9.21 70.52 18.11 16.84 
Maximum 2.25 14.48 10.12 80.06 18.64 17.35 
Average 1.91 12.94 9.72 78.51 18.32 17.04 

R1 - Rhizomes of the Croatian genotype; R2 - Rhizomes of the English genotype; S - seedlings 
of the Polish genotype; P0= Ash fertilization treatment (0 t/ha); P2= Ash fertilization treatment (2 
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t/ha); P5= Ash fertilization treatment (5 t/ha); Different letters (in columns) indicate difference 
according to Tukey HSD post hoc test (p ≤ 0.05); Statistical significance; * p ≤ 0.01; ** p ≤ 0.05. 

Principal component analysis (PCA) of proximate analysis and calorific values for Miscanthus 
x Giganteus is shown in the figure 3. 

 

Figure 3. Prinicipal component analysis (PCA) of proximate analysis and calorific values 
of Miscanthus x Giganteus 

 
3.4. Effect of planting material and treatment on changes in the biomass composition of 

Miscanthus 
 

To study the influence of the parameters of planting type, ash treatment and their interactions 
on the composition and energy value of biomass, a univariate analysis with the values of the sum of 
squares for each variable and their statistical significance according to the p coefficient is presented in 
Table 3. 

 
Table 3. Univariate analysis of the influence of the parameters type of planting material, ash 
treatment and their interactions on the change in biomass properties Miscanthus x Giganteus. 

SoS 
Effect Df Ash Coke FC VM N C S H O HHV LHV 
Type 2 1.22* 5.67 0.13 143.88** 0.39* 7.61* 0.00 0.18* 10.82* 0.82* 0.67* 

Treatment 2 0.69* 2.65 4.54** 149.99** 0.05 0.29 0.01** 0.01 0.36 0.00 0.01 
Type × 

Treatment 
4 0.49** 24.74* 3.47 361.99* 0.15 0.78 0.01** 0.05 1.74 1.02* 1.03* 

Error 72 2.56 107.67 49.28 1483.83 1.40 21.40 0.07 1.00 27.43 4.58 4.38 
SoS – Sum of squares; Df – Degrees of freedom; FC – content of fixed carbon; VM – content of 
volatile matter; N – content of nitrogen; C – content of carbon; S – content of sulfur; H – content of 
hydrogen; O – content of oxygen; HHV – HHV; LHV – lower heating value; Statistical significance; 
* p ≤ 0.01; ** p ≤ 0.05. 
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3.5. Modelling the heating value of biomass 
 
Tables 4 and 5 show the basic characteristics and performance of the developed models 

 
 

Table 4. Basic information about the performance of the developed regression model 
  Performance Model error     Activation function 

Output Train Test Train Test 
Train 

algorithm 
Error 

function 
Hidden Output 

HHV 0.999 0.999 0.001 0.002 BFGS 8043 SOS Tanh Exp. 
LHV 0.972 0.999 0.001 0.004 BFGS 0 SOS Log. Iden. 

 
Table 5. Statistical error test and residual analysis of the developed regression models 
Model Output Χ2 RMSE MBE MPE SSE AARD R2 Skew Kurt StDev Var 

rNN 
HHV 0.001 0.032 -0.010 0.063 0.008 0.102 0.964 -2.963 8.846 0.032 0.001 
LHV 0.002 0.043 -0.014 0.152 0.015 0.471 0.927 -1.887 4.951 0.043 0.002 

rNN – regression neural network; HHV – HHV; LHV – lower heating value; Χ2- chi squared 
test; RMSE – root mean square error; MBE – mean bias error; MPE – mean percentage error; SSE – 
sum squared error; AARD – average absolute relative deviation;  R2 – coefficient of determination; 
Skew – skewness; Kurt – kurtosis; SD – standard deviation; Var – variance 

 
The rNN regression models for predicting HHV and LHV show robust performance. Prominent 

indicators include remarkably low chi-squared (Χ2) values (0.001 for HHV, 0.002 for LHV) and 
substantial coefficients of determination (R2 =  0.964 for HHV, 0.927 for LHV).  

After conducting Yoon's sensitivity analysis to determine the relative importance of the input 
variables on the output values of HHV and LHV, the influence of each variable of the ultimate 
analysis on the output value was determined (Figure 4). 

 

Figure 4. Relative importance (%) of ultimate analysis on the output value of a) HHV and 
b) LHV 

4. Discussion 

The average DM value of the tested samples was 21 t/h, while the average stem height was 3.10 
m. In general, ash provides plants with vital substances that can improve plant metabolism, promote 
root development and improve plant health. The use of ash as fertiliser can increase both fresh mass 
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and dry mass yield of the plants [40]. With regard to the results, it can be seen that the application of 
R2 in interaction with P5 had the greatest effect on stem height and was significantly above the 
average (3.34 m). Šurić et al. (2022) [41] found in their study that the use of sewage sludge as 
fertiliser increased the yield of the energy crop Virginia mallow. The application of 6.64 t/h sewage 
sludge increased the average stem height and dry matter yield from 3.12 m; 6.53 t/ ha to 3.28 m; 8.85 
t/ha, compared to the control treatment. The two-year study conducted by Saletnik et al., (2018) [42] 
showed an 8-68% increase in energy crop yields when biochar, biomass ash and their combination are 
used as soil amendments to replace classical mineral fertilisers and reinforce organic practises. To 
determine the properties of the input raw material in the production process, it was necessary to study 
the physico-chemical and chemical properties of the biomass [43]. The highest proportion of C 
(51.79%) and H (5.92%) was found in R2 rhizomes in all fertiliser treatments. Voća et al (2021) [44] 
reported the values for elements of the ultimate analysis Miscanthus x Giganteus for C (51.65%), H 
(6.09%), N (0.18%), S (0.08%), O (42.00%) after laboratory analysis. When comparing the results of 
the analysis, it was found that the values obtained were within the range of the literature researched. 
The lowest sulphur content (0.05%) was found when rhizomes from Croatia (R1) were used, i.e. when 
no ash was used (P0).  Considering the negative impact of sulphur on the environment, it is 
recommended to use fuel with a lower sulphur content [45]. Anshariah et al., (2020) [46] states that 
there is a strong correlation between the proportion of FC and the increase in calorific value, i.e. that 
the increase in FC directly affects the increase in energy values. Although in the study the highest 
proportion of FC (10.12%) shows that R1 without applying any fertiliser treatment does not have the 
highest calorific value and is even lower than the average (18.21 MJ/kg), which is also influenced by 
other variables in the proximate analysis [47]. The highest ash content was found in plant type 'S' 
under treatment P5 (2.25%). Gismatulina et al., (2022) [49] gives ash values in the range of 0.90-
2.95%.  The highest HHV and LHV values (18.64; 17.35 MJ/kg) were found in R2 with the P5 
treatment of ash fertilisation (5 tonnes per hectare). Significant differences were found in VM content 
between samples, which reached a maximum of 80.06% in R1 plant after P2 treatment. This result 
highlights the significant influence of plant type and treatment on critical properties of the plant 
material, which has potential implications for energy production and various industrial applications. 
Šurić et al. (2022) [41] reported that no significant differences in ash, coke, fixed carbon and calorific 
value were found after the application of different sewage sludge fertiliser treatments. However, the 
application of sewage sludge treatment at a rate of 1.66 t/h resulted in a significant increase in VM.  
Osman et al. (2018) [50] reported a volatile matter (VM) value of 72.5% and ash content of 3.38% 
after analysis. The study by Yorgun and Şimşek (2003) [51] reported a biomass composition of 71.4% 
volatile matter, 18.5% solid carbon, 3.3% ash and 6.8% moisture.   

In the final step of the study, an artificial neural network regression model was developed to 
model the HHV of biomass Miscanthus x Giganteus. 

When validating the regression neural network (rNN) model, the data was split as standard 
into 70% for training and 30% for testing to ensure a comprehensive assessment of the models 
predictive accuracy. The robustness of the model was confirmed by various statistical error tests and 
residual analyses, including the chi-square test, root mean square error (RMSE) and coefficient of 
determination (R²), demonstrating its effectiveness in predicting the higher and lower heating values 
(HHV and LHV) of Miscanthus x Giganteus biomass. 
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 The model used to estimate the HHV showed better performance in training and testing 
(0.999 and 0.999) in contrast to the model used to estimate the LHV (0.972 and 0.999). Comparing 
the predictive performance of the rNN model developed in this study with that reported by 
Noushabadi et al. (2021) [52], a number of observations become clear. The coefficient of 
determination (R²) achieved by the rNN model for HHV (0.964) and LHV (0.927) indicates a better 
fit to the data than the maximum R² of 0.96.  

The study limitations include a limited sample size and diversity, focusing on specific 
Miscanthus x Giganteus species and ash fertilisation treatments. Its regional focus may not fully 
represent the different geographical contexts. Future research should investigate how different 
climates and soils affect Miscanthus x Giganteus, assess the long-term environmental impacts of ash 
fertilisation, and use advanced technologies to better understand plant-environment interactions. 
These steps are critical to understanding the plant's role in sustainable biomass production and its 
environmental impact. 

5. Conclusions 

In this study of Miscanthus x Giganteus, different planting materials and ash fertilizers were 
found to have different effects on crop yields, growth, and composition. Notably, sample 3 had the 
highest yield, sample 8 had the lowest yield, and sample 9 had exceptional development with the 
greatest average stem height. Unfertilized seedlings had elevated nitrogen levels, while R1 types had 
low sulphur levels under certain conditions. Ash formation was notable in 'S' x P5 plants, while R1 x 
P5 combinations had high carbon content as evidenced by high coke levels. Energy content, as 
measured by HHV and LHV, varied in all cases, illustrating the effects of treatments. The artificial 
neural network (ANN) regression model showed high efficiency in predicting the higher heating value 
(HHV) and lower heating value (LHV) of Miscanthus x Giganteus. The model showed excellent 
performance metrics with robust coefficients of determination, indicating its potential as a reliable 
tool for estimating the energy content of biomass.Acknowledgement 
The publication was supported by the Croatian Science Foundation, under project No. IP-2018-01-
7472 “Sludge management via energy crops production” within the project “Young Researchers’ 
Career Development Project—Training of Doctoral Students”, and co-financed by the European 
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ABSTRACT
In this study machine learning (ML) models have been employed to predict the 
higher heating value (HHV) of biomass by utilizing input variables derived from 
ultimate, proximate, and structural analyses. In total, 180 models were devel
oped, with 124 utilizing ultimate analysis data, 28 based on proximate analysis, 
and 28 relying on structural analysis. Various ML techniques, including poly
nomial models (SOP), support vector machines (SVM), random forest regres
sion (RFR), and artificial neural networks (ANN), were employed for analysis. 
The study found that ANN models, when “fed” with FC and VM data, provided 
considerable accuracy in prediction results, with the best results obtained with 
2-12-1 architecture (R2 = 0.96). In addition, a separate model configuration that 
processed inputs on biomass constituents such as cellulose, lignin, and hemi
cellulose showed remarkable agreement with empirical data. Additional find
ings revealed that the models created using SOP (R2 = 0.95), SVM (R2 = 0.95), 
and RFR (R2 = 0.90) demonstrated minimal discrepancies when predicting 
HHV. This study provides significant insights into the investigation of biomass 
analysis techniques employing ML tools, paving the way for future research 
aimed at constructing a robust tool for HHV prediction. Subsequent models 
may explore integrating inputs from diverse analysis methods and leveraging 
advanced machine learning techniques to enhance accuracy further.
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Introduction

Agriculturally sourced biomass is gaining recognition as a significant renewable energy potential 
with substantial production capabilities. Its prominence in the energy sector is growing, as 
indicated by Bilandzija et al. (2018) and Cholewa et al. (2022). Biomass-derived energy stands 
as a crucial alternative energy source, as emphasized by Kołodziej, Pudełko, and Mańkowski 
(2023). By harnessing biomass in solid, liquid, or gaseous states, there is potential to substitute 
traditional energy sources and consequently diminish exhaust emissions, as highlighted by 
Gironès et al. (2017) and Tursi (2019). Lignocellulosic biomass, which consists mainly of 
agricultural residues, forestry by-products and various organic wastes, is at the forefront of 
renewable energy solutions due to its role in energy production (Das et al. 2021). The conversion 
of this biomass, especially from agricultural and forestry sources, into fuel is facilitated by 
a variety of technological processes (Li et al. 2021). A key parameter that defines the energy 
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potential of biomass fuel is its HHV, which measures the total energy output during combustion 
(Soponpongpipat, Sittikul, and Sae-Ueng 2015). ML algorithms are used for modeling the 
energetic properties of biomass and the calorific value, especially when input variables derived 
by empirical methods and obtained by chemical analysis are used (Dai et al. 2021). Access to 
extensive datasets is pivotal for data cleaning and analysis. Consequently, the key objective of the 
algorithms mentioned above is to enhance the efficiency of specific tasks, such as modeling, by 
utilizing pre-trained data. A fundamental feature and benefit of machine learning algorithms is 
their ability to establish meaningful (non-linear) correlations between input and output data, 
facilitating predictive analysis, as highlighted by Benos et al. (2021). Considering the emergence 
and need to analyze large datasets, “Big data” is emerging, which as more complex datasets 
represent a revolution in predictive analytics with more applications in agricultural practice (Ang 
and Seng 2021). Over time, many ML tools have been developed, among which the RFR models 
stand out as robust solutions for modeling multidimensional datasets. The algorithm works on 
the principle of nonlinear predictors that use a statistical technique to predict the desired output 
value (Matin and Chelgani 2016). Support vector machines (SVM) are used as machine learning 
models with the main objective of performing multitasking tasks while finding the optimal 
solution (Ranganayaki and Deepa 2019. As a learning method, SVM can be used for regression 
through its associated algorithm (Taki and Rohani 2022). As for regression, Bayesian schemes 
and kernel methods are be-coming increasingly popular as statistical tools and machine learning 
techniques (Martino and Read 2021). In supervised learning, models undergo training using 
input data and predetermined output values, which can be continuous in the context of 
regression models. The objective is to develop a model with minimal errors, subsequently 
validating it to assess its reliability, as highlighted by Tipping (2001). Artificial Neural 
Network (ANN) models excel at analyzing and modeling a diverse array of datasets. They are 
trained to discern patterns that result in non-linear relationships and correlations between inputs 
and outputs, as noted by Li et al. (2021). As data-driven, nonparametric models, ANNs can 
capture nuanced, unfamiliar functional relationships within empirical data. ANN serves as 
a computational approach mirroring the learning capabilities of the human brain and stands 
as a dependable tool for predictive modeling applications. Among ANN architectures, Multilayer 
Perceptron (MLP) models have proven to be particularly effective in handling intricate data due 
to their capacity for learning through non-linear connections. In practical applications, they have 
demonstrated remarkable efficacy in estimating biomass energy values, as evidenced by studies 
conducted by Çakman, Gheni, and Ceylan (2021) and Ighalo, Adeniyi, and Marques (2020). The 
mentioned model type showed high performance in modeling HHV biomass in research, reach
ing R2 = 0.77 (Brandić et al. 2022). The authors also compared the performance of this model 
with 10 linear models used in various earlier studies.

Statistical parameters like the chi-square test, RMSE, MBE, and MPE indicate a lower error level in 
the developed model compared to the referenced ones. Matin and Chelgani (2016) employed the 
random forest method to estimate the calorific value of fuels, achieving satisfactory results, particularly 
when using the final analysis dataset, which proved to be the best fit. García Nieto et al. (2019) 
developed diverse models for HHV biomass estimation, underscoring the significance of incorporat
ing hybrid SVM models and optimization techniques to enhance modeling performance. In a recent 
study, Xiaorui, Jiamin, and Longji (2023) improved the model’s efficiency by integrating the radial 
basis function (RBF) into the SVM model, achieving an impressive R2 value exceeding 0.91.

In the context of the literature review, this research aims to discern disparities in HHV 
modeling across various ML models, including SOP, SVM, RFR, and ANN. The study seeks 
not only to identify the most suitable dataset but also to enhance model performance through 
the refinement and consolidation of input variables in these models. A key goal is to examine 
the effectiveness of these ML models in estimating HHV biomass, focusing on identifying the 
most appropriate dataset in relation to the collected data. Additionally, the research will 
compare differences in accuracy or modeling error when input variables are reduced and 
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combined without repeating input variables, further contributing to the understanding of ML 
model optimization in HHV biomass estimation. This study addresses the notable gap in 
existing research regarding the comprehensive comparison and optimization of machine 
learning models for the prediction of biomass HHV, focusing on the integration of different 
input parameters from terminal, proximate and structural analyses. Despite the advances in 
ML applications for biomass analysis, there is a clear need for a systematic investigation to 
identify the most effective model configurations and datasets.

Materials and methods

Data gathering

The ML model was developed using data obtained from scientific sources, specifically the 
structural, ultimate, and proximate analyses gathered from the Web of Science database. 
Detailed information, including composition and understanding of the energetic properties of 
biomass, is presented in Supplementary Table S1, with references provided. The data is categorized 
into agricultural and forest biomass, providing a clear description of their composition, as well as 
their energetic properties, as outlined by Collard and Blin (2014). A total of 292 biomass samples 
were collected for proximate analysis, 249 samples for ultimate and 286 samples for structural 
analysis. The higher heating value served as the output parameter for all the models developed in 
the study.

Data manipulation

The statistical analysis involved calculating the mean and standard deviation of the categorized data, 
while the analysis of variance was employed to assess the differences between the observed categories. 
Data processing was carried out using the TIBCO STATISTICA program package and the Python 
programming language, along with the corresponding data.

Preparation of data for non-linear modeling

Data preparation for non-linear modeling followed the initial research phase, where collected data 
underwent a cleaning process to eliminate incomplete entries and standardize it for modeling, as 
discussed by Cvetkov-Iliev, Allauzen, and Varoquaux (2022) and Khayyaty et al. (2015). Ge et al. 
(2017) state that data analysis and cleaning is a key stage in discovering the relationship between 
each data in a set, but also a preparation for processing with different algorithms (Ge et al. 2017; Qiu 
et al. 2016). The research employed a combinatorial approach without repeated linkages to deter
mine the total number of possible combinations of input variables in the models and the corre
sponding number of models created. The quantity of models was determined by considering the 
total number of variables and the potential combinations of specific chemical analyses related to 
biomass, such as ultimate (C, H, N, S, and O), proximate (FC, VM, and Ash), and structural analysis 
(Lig, Cel, Hem). In total, 180 non-linear models were developed using different techniques, namely 
SOP, ANN, RFR, and SVM. Among these models, 124 were based on ultimate input data, 28 on 
proximate analysis, and 28 on structural analysis. The initial values for all models were derived from 
HHV data (refer to Table 1). Prior to constructing the models, the data for each model were split into 
training (70%) and testing (30%) sets, using a neural network over 100,000 cycles. To enhance 
comprehension of the research findings and the potential application of diverse non-linear models 
for estimating biomass HHV, a schematic representation of the formulated models is provided in 
Supplementary Table S2.
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Artificial neural networks (ANNs)

Artificial neural networks exhibit excellent accuracy in predicting biomass higher heating value 
(HHV) by optimizing weight coefficients and biases corresponding to specific input variables 
(Darvishan et al. 2018). The number of nodes in the hidden layer is randomly determined to 
identify the optimal solution for the output value. The fundamental equation governing ANN 
output is represented in Equation 1, as detailed in studies by Pezo et al. (2013) and Kollo and Von 
Rosen (2005): 

Y ¼ f1ðW2 � f2ðW1 � X þ B1Þ þ B2Þ (1) 

where Y represents the output value, f1 and f2 correspond to the transfer function in the hidden and 
output layer, X represents the input matrix for initial layer.

In this study, an ANN model was developed and fine-tuned through 100,000 iterations to 
avoid random correlations and achieve optimal performance with nine hidden neurons. The 
ANN was trained for 100 epochs, achieving stable accuracy before the 50th epoch to prevent 
overfitting.

Random forest regression (RFR)

RFR, a type of machine learning algorithm, is utilized in supervised regression tasks and excels in 
nonlinear modeling, demonstrating its effectiveness even in the presence of outliers, as highlighted in 
studies by Li et al. (2018) and Scornet, Biau, and Vert (2015). Schonlau and Zou (2020) found that RFR 
models were suitable for predictions with medium and large data sets. The RFR models were 
constructed with the data split 70% for training and 30% for testing the model and 10,000 random 
trees. Additionally, entropy was calculated for each internal node within the decision trees using the 
formula (Eq. 2): 

E ¼ �
Xc

i¼1
pi � log ðpiÞ (2) 

where c represents the number of unique classes and pi prior probability of each given class.

Table 1. Mean values and standard deviations of the variables from structural, proximate and ultimate analysis of agricultural and 
wood biomass.

Dataset Variable Agricultural biomass Wood biomass Statistical significance

Structural analysis Cel (%) 44.70 ± 13.40 44.04 ± 7.63 n.s.
Lig (%) 15.08 ± 7.87 27.64 ± 7.04 *
Hem (%) 23.21 ± 5.81 27.25 ± 4.41 *
HHV (MJ kg −1) 17.67 ± 1.66 19.68 ± 0.62 *

Proximate analysis FC (%) 14.60 ± 13.90 20.10 ± 6.52 n.s.
VM (%) 75.13 ± 17.49 74.36 ± 16.71 n.s.
ASH (%) 5.79 ± 12.13 5.59 ± 17.15 n.s.
HHV (MJ kg −1) 18.23 ± 3.3 18.98 ± 3.41 n.s.

Ultimate analysis C (%) 47.61 ± 7.76 48.13 ± 9.35 n.s.
H (%) 5.52 ± 1.47 5.37 ± 1.5 n.s.
N (%) 1.27 ± 1.12 0.70 ± 0.57 **
S (%) 0.26 ± 0.22 0.33 ± 0.46 n.s.
O (%) 39.87 ± 13.36 42.75 ± 12.46 n.s.
HHV (MJ kg −1) 18.73 ± 3.04 18.89 ± 3.47 n.s.

Cel – cellulose; Lig – lignin; Hem – Hemicellulose; HHV – higher heating value; FC – fixed carbon; VM – volatile matter; C – carbon; 
H – hydrogen; N – nitrogen; S – sulfur; O – oxygen; n.s. – not significant. Statistical significance: * p ≤ .01; ** p ≤ .05.
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Second order polynomials

Models in the form of second-order polynomials (SOP) are a suitable tool for finding relationships 
between variables by estimating the desired output value (Ostertagová 2012). Non-linear models in the 
form of second-order polynomials, incorporating quadratic, linear, and combined components, are 
developed to predict the higher heating value of agricultural and forest biomass based on specific input 
variables.

Statistical tests of the model fit

Statistical tests are employed to assess the model’s accuracy concerning the alignment between 
real data and the data predicted by the model. Utilizing the fit allows for a comprehensive 
comparison of all models in terms of their performance, enabling the identification of the 
best-fitting model, as demonstrated in studies by Bakshaev and Rudzkis (2017) and Maydeu- 
Olivares (2017). When evaluating the effectiveness of higher heating value modeling, several 
key statistical parameters were computed, including the Chi-square test(Χ2) (Equation 4), 
mean bias error (MBE) (Equation 5), mean percentage error (MPE) (Equation 6), root 
mean square error (RMSE) (Equation 7) and absolute average relative deviation (AARD) 
(Equation 8) (Arsenović et al. 2015): 

x2 ¼

PN

i¼1
ðxpre;i � xexp;iÞ

2

N � n
(3) 

MBE ¼
1
N
�
XN

i¼1
ðxpre;i � xexp;iÞ (4) 

MPE ¼
100
N
�
XN

i¼1

xpre;i � xexp;i
�
�

�
�

xexp;i

� �

(5) 

RMSE ¼
1
N
�
XN

i¼1
xpre;i � xexp;i
� �2

" #1=2

(6) 

AARD ¼
1
N
�
XN

i¼1

xexp;i � xpre;i

xexp;i

�
�
�
�

�
�
�
� (7) 

where xexp,i is the experimental values and xpre,i is the predicted values calculated by the model, N and 
n are the number of observations and constants, respectively.

Yoon method of global sensitivity

Sensitivity analysis offers a deeper understanding of the ANN model, shedding light on the 
interactions between input and output variables, as emphasized by Fernández-Navarro et al. 
(2016). In this study, the sensitivity method proposed by Yoon (Eq. 9) was employed, 
following the approach outlined by Yoon, Swales, and Margavio (2017), to discern these 
relationships.: 
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RIijð%Þ ¼

Pn

k¼0
ðwik � wkjÞ

Pm

i¼0

Pn

k¼0
ðwik � wkjÞ

�
�
�
�

�
�
�
�

� 100% (8) 

where w - denotes the weighting factor in the ANN model, i - input variable, j - output variable, 
k - hidden neuron, n - number of hidden neurons, m - number of inputs.

The architecture (a) and flowchart (b) of the research conducted are shown in Supplementary 
Figure S1.

Results

Table 1 show the results of the composition and characteristic analysis of agricultural and wood 
biomass after statistical processing.

Table 1 displays the outcomes of the statistical analysis conducted on the composition, chemical 
characteristics, and heating value of biomass. The statistical analysis revealed that the disparity in 
cellulose content between agricultural and wood biomass was not statistically significant. However, 
substantial differences were observed in lignin and hemicellulose content between the two types of 
biomasses. Interestingly, the proximate analysis of agricultural and wood biomass did not show any 
statistically significant differences in the observed variables. Similarly, when comparing the ultimate 
analysis variables between agricultural and woody biomass, no significant statistical distinctions were 
found, except for the nitrogen content. Specifically, agricultural biomass exhibited a significantly 
higher average proportion (1.27%) at a significance level of p ≤ .05 in this case.

Table 2 shows the performance of the most efficient ANN models in terms of characteristic analyses 
and the number of input parameters in the models.

Figure 1 shows a series of scatter plots comparing the predicted HHV with the target HHV for 
different biomass samples, using different modeling approaches. The rows correspond to the different 
types of datasets used to train and predict the model: structural analysis dataset, proximate analysis 
dataset and ultimate analysis dataset.

Table 3 displays the results of the model fit statistical tests for the most effective models, including 
ANN, SOP, SVM, and RFR, considering typical input variables and the number of inputs derived from 
ultimate, proximate, and structural analyses.

As shown in Table 3, the ANN model achieved the best results based on the ultimate analysis 
dataset, as shown by the R2 (0.90), followed by SOP (R2 = 0.82), SVM (R2 = 0.81) and RFR with R2 .76). 

Table 2. Performance of developed ANN, RFR and SVM models based on different input parameters.

Model Inputs
Net. 

name
Train. perf 

(R2).
Test perf. 

(R2)
Train. 
error

Test 
error

Train. 
algorithm

Error 
function

Hidden 
act. Output act.

ANN CHNSO MLP 
5-11-1

0.87 0.93 0.49 0.54 BFGS 123 SOS Tanh Tanh

FC VM MLP 
2-12-1

0.96 0.96 0.19 0.23 BFGS 187 SOS Tanh Tanh

Cel Lig 
Hem

MLP 
3-9-1

0.92 0.86 0.12 0.16 BFGS 254 SOS Tanh Exponential

RFR CH - 0.71 0.83 - - - - - -
FC VM 

ASH
- 0.91 0.89 - - - - - -

Lig Hem - 0.83 0.79 - - - - - -
SVM CHNSO - 0.77 0.89 - - - - - -

FC ASH - 0.96 0.95 - - - - - -
Cel Lig - 0.75 0.71 - - - - - -

ANN – Artificial neural network; MLP – Multi Layer Perceptron; RFR – Random forest regression; SVM – Support vector machine; 
C – Content of carbon (%); H – content of hydrogen (%); N – Content of nitrogen; S – Content of sulfur; O – Content of oxygen; 
FC – Content of fixed carbon; VM – Content of volatile matter; Cel – Content of cellulose; Hem – Content of hemicellulose; 
Lig – content of lignin; Net. – Network; Train – Training; Test. – Testing.
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Looking at the amount of modeling error (RMSE and MBE), the ANN model also showed the best 
performance in the proximate analysis.

The SOP model had the second highest R2 value of 0.95, followed by the SVM model with an R2 

value of 0.95 and the RFR model with an R2 value of 0.90. In the structural analysis, the ANN model 
had the best results with an R2 value of 0.91 and the lowest RMSE value of 0.51. The RFR model had 
the second highest R2 value of 0.82, followed by the SOP model with an R2 value of 0.79 and the SVM 
model with an R2 value of 0.74.

Supplementary Table S3 shows the statistical tests of the model fit for all models developed.
In Figure 2, the diagram illustrates Yoon’s global sensitivity method for ANN models, emphasizing 

the relative importance of input parameters from ultimate analysis (C, H, N, S, and O), proximate 
analysis (FC, VM), and structural analysis (Cel, Lig, Hem) concerning the output value of higher 
heating value.

Figure 1. X-Y scatterplot for models based on input variables of structural, proximate and ultimate analysis for ANN, SVM, RFR and 
SOP model.

Table 3. Goodness of fit for the most efficient models.

Residual analysis

Analysis Model Inputs χ2 RMSE MBE MPE SSE AARD R2 Skew Kurt SD Var

Ultimate ANN CHNSO 1.02 1.01 0.06 4.21 251.19 196.44 0.90 −0.46 1.23 1.01 1.01
SOP CHNO 1.77 1.33 0.10 5.08 437.11 237.51 0.82 0.94 8.10 1.33 1.76
SVM CHNSO 1.86 1.36 0.01 5.24 462.32 238.01 0.81 0.65 5.49 1.37 1.86
RFR CH 4.49 2.11 −0.03 8.05 1113.54 379.07 0.76 1.07 5.76 2.12 4.49

Proximate ANN FC VM 0.41 0.64 0.03 2.65 118.33 240.27 0.96 −0.48 1.53 0.64 0.41
SOP FC ASH 0.52 0.72 0.02 3.01 150.43 339.65 0.95 0.08 2.26 0.72 0.52
SVM FC ASH 0.62 0.79 0.12 3.47 177.33 366.24 0.95 −1.17 2.99 0.78 0.61
RFR FC VM ASH 6.56 2.56 0.03 8.80 1907.50 505.41 0.90 0.85 9.09 2.56 6.55

Structural ANN Cel Lig Hem 0.26 0.51 0.00 2.30 74.81 193.72 0.91 −1.09 3.34 0.51 0.26
RFR Lig Hem 0.54 0.73 0.00 3.19 153.37 275.97 0.82 −0.46 2.91 0.73 0.54
SOP Cel Lig Hem 0.61 0.78 −0.01 3.22 172.78 262.14 0.79 −0.51 3.37 0.78 0.61
SVM Cel Lig 2.68 1.63 1.16 8.13 376.45 255.21 0.74 −0.80 2.16 1.15 1.32

C – content of carbon; H – content of hydrogen; N – content of nitrogen; S – content of sulfur; O – content of oxygen; FC – content of 
fixed carbon; VM – content of volatile matter; Cel – content of cellulose; Hem – content of hemicellulose; Lig – content of lignin; 
ANN – Artificial neural network; SVM – Support vector machine; RFR – Random forest regression; Skew – Skewness; Kurt – Kurtosis; 
SD – Standard deviation; Var – Variance.
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Figure 2. Yoon’s method of global sensitivity of ANN models based on input parameters (a) ultimate analysis (b) proximate analysis 
and (c) structural analysis.
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Discussion

For agricultural biomass the average share of cellulose is 44.70%, and for wood biomass 44.04%. The 
proportion of lignin and hemicellulose is larger on average for wood biomass (27.64% and 27.25%), 
while the proportion is lower for agricultural biomass (15.08% and 23.21%). Forest biomass has 
a HHV of 19.68 MJ kg −1, while agricultural biomass is 17.67 MJ kg −1. Mansor et al. (2019) gives the 
values of hemicellulose 32–37%, lignin 19–22%, and cellulose 30–42% whereas agricultural biomass 
has an HHV value of 17.67 MJ kg− 1, while Callejón-Ferre et al. (2014) mention average HHV values in 
the range of 12.60–17.01 MJ kg −1 for different types of biomasses.

The share of FC in agricultural biomass is 14.60%, while in wood biomass it is 20.10% in wood 
biomass. The average percentage of VM and ash is higher in agricultural biomass (75.13% and 5.79%, 
respectively), while the percentage is lower in wood biomass (74.36% and 5.59%, respectively). The 
HHV of agricultural biomass is 18.23 MJ kg −1, while that of wood biomass is 18.89 MJ kg −1. Voća 
et al. (2021) report the mean values of FC (9.78%), VM (81.88%), and ash (1.91%) for Miscanthus 
biomass. The authors also give the mean value of HHV (17.78 MJ kg −1).

The average percentage of C in agricultural and wood biomass is 47.61% and 48.13%, 
respectively. The values for H and N are higher on average in agricultural biomass (5.52% and 
1.27%), while they are lower in wood biomass (5.37% and 0.70%). The share of S in agricultural 
biomass is 0.26%, while it is slightly higher in wood biomass (0.33%). The average value of O in 
wood biomass is 47.75%, while in agricultural biomass it is 39.87%. The HHV has an average 
higher value for forest biomass (18.89 MJ kg −1), as in the other observed analyses, while the 
HHV value for agricultural biomass is 18.73 MJ kg −1. The ultimate and calorimetric analysis of 
various biomass fuels were studied by Ismaila, Abdullahi, and Garba (2013). Authors reported 
that C content ranged from 35.92% to 75.98%, S content from 0.01% to 0.11%, H content from 
2.95% to 6.10%, N content from 0.70% to 3.50%, O content from 14.50% to 56.78%, and HHV 
from 11.03 MJ kg−1 to 28.92 MJ kg−1 based on the Boie equation.

Table 2 displays the developed ANN models, considering inputs from ultimate, proximate, 
and structural analyses. The ANN model created using input values of C, H, N, S, and 
O demonstrated superior performance with a network structure comprising 5 artificial neurons 
in the input layer, 11 in the hidden layer, and 1 in the output layer. This model exhibited strong 
HHV prediction capabilities, boasting a coefficient of determination of 0.87 for training and 0.93 
for testing, while the training error was 0.49 and the testing error was 0.54. Noushabadi et al. 
(2021) conducted a study aimed at estimating the HHV of different types of biomass fuels based 
on the input variables of elemental analysis. After evaluation for the developed ANN model, it 
showed high performance in modeling (R2 = 0.92 and RMSE = 1.08), while Xing et al. (2019) 
reported the values of R2 (0.90) and RMSE (3.55).

Furthermore, the ANN model based on proximate analysis inputs (FC and VM) utilized 
a 2-12-1 structure, yielding outstanding results. The network demonstrated high efficiency in 
predicting HHV, evident from the R2 value of 0.96 for both training and testing, and low errors 
of 0.19 and 0.23, respectively. Veza et al. (2022) conducted studies to accurately estimate HHV 
biomass using input data from proximate analysis. After statistical analysis, authors determined 
a high coefficient of determination (R2 = 0.94) and a low error level (RMSE = 0.99), while Güleç 
et al. (2022) gives R2 = 0.82–0.87.

Lastly, using inputs from structural analysis (Cel, Lig, and Hem), an ANN structure of 3-9-1 
was developed. This model displayed strong predictive ability, with coefficients of determination 
of 0.92 for training and 0.86 for testing. The model exhibited minimal errors for both training 
(0.12) and testing (0.16), underscoring its accuracy in predicting the initial HHV value. 
Maksimuk et al. (2021) evaluated 30 equations for predicting HHV, presented two with less 
than 3% error and suggested using ultimate analysis for better accuracy, as predicting HHV from 
structure analysis dataset alone is more prone to bigger errors. The ANN (artificial neural 
network) model consistently demonstrated the highest accuracy across all three types of 
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analyses – ultimate, proximal, and structural – with an R2 value of ≥ 0.9 for each analysis. The 
SVM (support vector machine) and SOP models also exhibited commendable accuracy, boasting 
R2 values ranging from 0.74 to 0.95. In contrast, the RFR (random forest regression) model 
generally displayed lower accuracy compared to the other models. Notably, all models performed 
most accurately when estimating HHV using the proximate analysis dataset.

Analyzing the ultimate analysis inputs, the model showed significant impacts on HHV 
output based on the following variables: C (35.51%), H (−18.71%), N (31.88%), S (10.09%), 
and O (−3.81%). The sensitivity analysis depicted in Figure 2(a) revealed that an increase in 
C, N, and S, coupled with reduced H and O variables, primarily influenced the rise in HHV 
output.

Furthermore, the most effective proximate analysis model was constructed using two input 
variables: FC (−44.88%) and VM (−55.12%), yielding high accuracy in predicting HHV. In the 
ANN model based on structural analysis inputs, the greatest impact on the highest HHV 
output was observed with an increase in Cel (33.65%) and Lig (32.01%), along with a decrease 
in Hem (−34.34%). These findings underline the superior performance of the ANN model 
across diverse analyses, as evidenced by its highest R2 values and lowest RMSE and MBE 
values.

Conclusions

Machine learning models, including non-linear ones such as SOP, SVM, RFR, and ANN, have 
proven effective in modeling the higher heating value (HHV) of biomass using input parameters 
derived from ultimate, proximate, and structural analyses. In this study, a total of 180 models were 
developed: 124 based on ultimate analysis, 28 on proximate analysis, and 28 on structural analysis. 
The models were generated using a combination method without repeating the elements (variables) 
from characteristic biomass analyses. The best-performing SOP, SVM, RFR, and ANN models for 
each dataset are presented. Among all the models developed, ANNs emerged as the most effective in 
modeling HHV for agricultural and forest biomass datasets. For instance, the coefficient of deter
mination for ANN model 5-11-1 (based on inputs C, H, N, S, and O) was R2 = 0.90, while ANN 
model 2-12-1 (inputs FC and VM) achieved R2 = 0.96. Additionally, the model based on inputs Cel, 
Lig, and Hem attained an R2 value of 0.91. Furthermore, models incorporating second-order 
polynomials (R2 = 0.95), SVM (R2 = 0.95), and RFR (R2 = 0.90) developed based on proximate 
analysis inputs demonstrated the lowest errors in HHV modeling. This study extends existing 
knowledge by providing a detailed approach to predicting the HHV of biomass using different 
inputs in ML models, improving accuracy and model optimization. While this study demonstrates 
the effectiveness of ML models in predicting the HHV of biomass, future research must address both 
the challenges of scalability across different biomass types and practical applications, as well as the 
difficulties of data collection and model generalization, to develop robust, universally applicable 
algorithms for comprehensive biomass calorific value estimation.
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