Primijenjena analiza prostornih podataka u R-u (169285)
Course coordinators
Course description
Napredak tehnologije, niska cijena i dostupnost GPS uređaja doveli su do povećanja prisutnosti skupova georeferenciranih podataka i interesa znanstvenika za njihovom analizom. Cilj takvih analiza je opisivanje prostornog rasporeda različitih pojava (resursi, zagađenje, bioraznolikost i sl.) i modeliranje uzroka takvog rasporeda.
Prilagođavanje i povezivanje velikog broja statističkih metoda za analizu i prikaz prostornih podataka, i njihova dostupnost kroz različite vrste računalnih programa može djelovati obeshrabljujuće za nove korisnike. Glavni cilj modula je sistematizirati metode za statističku analizu i prikaz prostornih podataka i približiti ih studentima kroz konkretne primjere primjene različitih metoda i samostalne radove koji će studentima omogućiti samostalnu analizu, vizualizaciju i interpretaciju prostornih podataka. Cilj nam je i upoznati studente sa mogućnošću korištenja i doprinosa izvorima otvorenih podataka (istraživački, prostorni, podaci o okolišu i ekosustavu, statistički podaci, otvoreni podaci sektora prirode, agronomije i dr.).
Sustav R (slobodnog koda) odabran je kao pogodan sustav za demonstraciju metoda za analizu prostornih podataka jer osigurava alate za unos, manipulaciju, analizu i prikaz prostornih podataka unutar istog okruženja. Zbog široke baze korisnika R osigurava i kvalitetna i brza proširenja funkcionalnosti (putem paketa) novim funkcijama i široku bazu dostupne literature na različitim jezicima (dominantno na engleskom).
Type of course
- Diplomski studij / Biljne znanosti (Elective course, 4 semester, 2 year)
- Diplomski studij / Genetika i oplemenjivanje životinja (Elective course, 2 semester, 1 year)
- Diplomski studij / Hortikultura / Voćarstvo (Elective course, 4 semester, 2 year)
- Diplomski studij / Hortikultura / Vinogradarstvo i vinarstvo (Elective course, 4 semester, 2 year)
- Diplomski studij / Hortikultura / Ukrasno bilje (Elective course, 4 semester, 2 year)
- Diplomski studij / Hortikultura / Povrćarstvo (Elective course, 4 semester, 2 year)
ECTS: 6.00
English language: L1
E-learning: L2
Teaching hours: 60
Lectures: 30
Practicum: 26
Seminar: 4
Lecturer
Associate teacher for exercises
Associate teacher for seminars
Grading
Sufficient (2): 60%-70%
Good (3): 71%-80%
Very good (4): 81%-90%
Excellent (5): 91%-100%
Conditions for obtaining signature
Redovno pohađanje nastave (prema članku 12. Pravilnika o studiranju). Izostali praktikum treba nadoknaditi predajom domaće zadaće iz te nastavne jedinice.
General competencies
Osnovno znanje sustava R i sistematizacije i analize podataka iz bilo kojeg izvora (iz modula Biometrika, Uvod u SAS i R na Agronomskom fakultetu Sveučilišta u Zagrebu, iz tečajeva na SRCE ili samostalno: Coursera, Datacamp ( datacamp.com ) ili drugih)
Types of instruction
- Predavanja
- Provjere znanja
seminar, pismeni i usmeni ispit - Ostali oblici skupnog ili samostalnog učenja
- Seminari
- Vježbe
Learning outcomes
Learning outcome | Evaluation methods |
---|---|
Odabrati, organizirati i vrednovati prostorne podatke u sustavu R | seminarski rad, pismeni, usmeni ispit |
Analizirati vlastite prostorne podatke i nacrtati grafički prikaz rezultat analize u grafičkim uređajima sustava R (ekranski uređaj, .pdf, .eps, .png grafički uređaji) | seminarski rad, pismeni, usmeni ispit |
Uz svoj set podataka u R-u povezati odgovarajuće podatke s prostornom komponentom iz slobodno dostupnih on-line repozitorija otvorenih (javnih) podataka | seminarski rad, pismeni, usmeni ispit |
Odabrati, primijeniti i interpretirati potrebnu analizu za vlastite podatke s prostornim aspektom pomoću programskih paketa sustava R | seminarski rad, pismeni, usmeni ispit |
Procijeniti, vrednovati i analizirati sadržaj stručne i znanstvene literature iz područja prostorne analize | seminarski rad, pismeni, usmeni ispit |
Working methods
Students' obligations
Pohađati predavanja, izvršiti sve samostalne vježbe, rješavati zadaće zadane početkom semestra, pročitati odabrane znanstvene radove i izložiti ih, te kritički sudjelovati u grupnoj raspravi.
Methods of grading
Evaluation elements | Maximum points or Share in evaluation | Grade rating scale | Grade | Direct teaching hours | Total number of average student workload | ECTS |
---|---|---|---|---|---|---|
pismeni ispit | 60% |
0-60 61-70 71-80 81-90 91-100 |
Insufficient (1) Sufficient (2) Good (3) Very good (4) Excellent (5) |
36 | 108 | 3.6 |
seminar | 20% |
0-60 61-70 71-80 81-90 91-100 |
Insufficient (1) Sufficient (2) Good (3) Very good (4) Excellent (5) |
12 | 36 | 1.2 |
usmeni ispit | 20% |
0-60 61-70 71-80 81-90 91-100 |
Insufficient (1) Sufficient (2) Good (3) Very good (4) Excellent (5) |
12 | 36 | 1.2 |
Ukupno | 100% | 60 | 180 | 6 |
Weekly class schedule
- Struktura prostornih podataka i sustavi za njihovu vizualizaciju i analizu, P Sakupljanje prostornih podataka i upoznavanje s tehničkim rješenjima, V
- Prostorni podaci u sustavu R, P Osnove rada s prostornim podacima u sustavu R, V
- Primjena odgovarajućih koordinatnih sustava i projekcija u radu s R-objektima, otvorene baze podataka za pomoć pri projekcijama - P Prijenos i osnovna manipulacija s vlastitim skupljenim prostornim podacima - V
- Vizualizacija prostornih podataka u sustavu R, otvoreni prostorni podaci - P Primjena dostupnih prostornih informacija na vlastite i simulirane podatke - V
- Drugi sustavi za rad s prostornim podacima, otvorene baze i portali P, V
- Topologija, otvoreni prostorni podaci P, V
- Uvod u prostorne analize, metode prostorne analize ovisno o tipu podataka P, V
- Mjere opće povezanosti podataka, autokorelacija s atributima nominalne skale P,V
- Točkasti procesi P,V
- Izlaganje studentskih seminara i zadaće 1
- Interpolacije, P, V
- Primjena variogramskih analiza P, V
- Prostorni regresijski modeli, P, V
- Izlaganje studentskih seminara i zadaće 2
- Klasteriranje s prostornim podacima
Obligatory literature
- Malvić T. (2013). Rječnik osnovnih geostatističkih pojmova. Bivand RS., Pebesma EJ., Gómez-RubioV. (2013). Applied Spatial Data Analysis with R (Use R). Springer. Odabrani znanstveni radovi Safner T., Miller MP., McRae BH., Fortin MJ., Manel S. (2011) Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics. International Journal of Molecular Sciences 12 (2), 865-889. Safner T., Miaud C., Gaggiotti O., Decout S., Rioux D., Zundel S., Manel S. (2011) Combining demography and genetic analysis to assess the population structure of an amphibian in a human-dominated landscape. Conservation genetics 12 (1), 161-173 Šprem N., Frantz AC., Cubric Curik V., Curik I. (2013) Influence of habitat fragmentation on population structure of red deer in Croatia; Mammalian Biology - Zeitschrift für Säugetierkunde.
- Radović A. (2015). Programski jezik R u vizualizaciji i analizi prostornih podataka (S730). Priručnik za polaznike. Srce.
Recommended literature
- Spatial statistics; Bryan Ripley (http://www.people.fas.harvard.edu/~zhukov/spatial.html )
- Otvoreni podaci: Što su i kako mi mogu koristiti, besplatni MOOC tečaj dostupan na: http://science.geof.unizg.hr/todo-platform/